{"title":"单位圆附近多项式零点的分布","authors":"Mithun Kumar Das","doi":"10.1016/j.jat.2024.106087","DOIUrl":null,"url":null,"abstract":"<div><p>We estimate the number of zeros of a polynomial in <span><math><mrow><mi>ℂ</mi><mrow><mo>[</mo><mi>z</mi><mo>]</mo></mrow></mrow></math></span> within any small circular disk centered on the unit circle, which improves and comprehensively extends a result established by Borwein, Erdélyi, and Littmann in 2008. Furthermore, by combining this result with Euclidean geometry, we derive an upper bound on the number of zeros of such a polynomial within a region resembling a gear wheel. Additionally, we obtain a sharp upper bound on the annular discrepancy of such zeros near the unit circle. Our approach builds upon a modified version of the method described in Borwein et al. (2008), combined with the refined version of the best-known upper bound for angular discrepancy of zeros of polynomials.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution of the zeros of polynomials near the unit circle\",\"authors\":\"Mithun Kumar Das\",\"doi\":\"10.1016/j.jat.2024.106087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We estimate the number of zeros of a polynomial in <span><math><mrow><mi>ℂ</mi><mrow><mo>[</mo><mi>z</mi><mo>]</mo></mrow></mrow></math></span> within any small circular disk centered on the unit circle, which improves and comprehensively extends a result established by Borwein, Erdélyi, and Littmann in 2008. Furthermore, by combining this result with Euclidean geometry, we derive an upper bound on the number of zeros of such a polynomial within a region resembling a gear wheel. Additionally, we obtain a sharp upper bound on the annular discrepancy of such zeros near the unit circle. Our approach builds upon a modified version of the method described in Borwein et al. (2008), combined with the refined version of the best-known upper bound for angular discrepancy of zeros of polynomials.</p></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021904524000753\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904524000753","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Distribution of the zeros of polynomials near the unit circle
We estimate the number of zeros of a polynomial in within any small circular disk centered on the unit circle, which improves and comprehensively extends a result established by Borwein, Erdélyi, and Littmann in 2008. Furthermore, by combining this result with Euclidean geometry, we derive an upper bound on the number of zeros of such a polynomial within a region resembling a gear wheel. Additionally, we obtain a sharp upper bound on the annular discrepancy of such zeros near the unit circle. Our approach builds upon a modified version of the method described in Borwein et al. (2008), combined with the refined version of the best-known upper bound for angular discrepancy of zeros of polynomials.
期刊介绍:
The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others:
• Classical approximation
• Abstract approximation
• Constructive approximation
• Degree of approximation
• Fourier expansions
• Interpolation of operators
• General orthogonal systems
• Interpolation and quadratures
• Multivariate approximation
• Orthogonal polynomials
• Padé approximation
• Rational approximation
• Spline functions of one and several variables
• Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds
• Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth)
• Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis
• Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth)
• Gabor (Weyl-Heisenberg) expansions and sampling theory.