作为低碳钢酸腐蚀抑制剂的大戟科植物叶提取物的生物量:实验和理论研究

Ifeoma M. Iloamaeke , Sylvester Ezenwa , Lukman Olasunkanmi , Kevin Lobb , Nnaemeka Nnaji
{"title":"作为低碳钢酸腐蚀抑制剂的大戟科植物叶提取物的生物量:实验和理论研究","authors":"Ifeoma M. Iloamaeke ,&nbsp;Sylvester Ezenwa ,&nbsp;Lukman Olasunkanmi ,&nbsp;Kevin Lobb ,&nbsp;Nnaemeka Nnaji","doi":"10.1016/j.nxmate.2024.100344","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated weight loss and electrochemical impedance spectroscopy (EIS) to explore the inhibition potential of <em>Anthonotha macrophylla</em> leaf extract (AME) on mild steel corrosion in 0.5 M H<sub>2</sub>SO<sub>4</sub> medium. The result shows that the highest inhibition efficiency of 90.47 % at 303 K and 80.02 % at 333 K were obtained. At temperatures of 303 K and 333 K, it was discovered that the corrosion rate decreased as the concentration of the AME inhibitor rose from 0.1 g/L <span><math><mrow><mo>(</mo><mn>7.73</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mspace></mspace></mrow></math></span>gcm<sup>−2</sup>hr<sup>−1</sup>) to 0.5 g/L <span><math><mrow><mo>(</mo><mn>2.27</mn><mspace></mspace><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></math></span> gcm<sup>−2</sup>hr<sup>−1</sup>). The result of the EIS measurement is in consistent with that of the weight loss method. Adsorption isotherms portrayed that Tempkin and Freundlich's adsorption isotherms were obeyed. Calculated values of Ea, <span><math><mrow><mo>∆</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>ads</mi></mrow></msub></mrow></math></span> and <span><math><mrow><mo>∆</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>ads</mi></mrow></msub></mrow></math></span> suggested a physical adsorption mechanism. FTIR, SEM-EDX, and XRD measurements revealed that the AME inhibitor efficiently shields the mild steel surface from further corrosion attack by inducing the formation of passivated film on the mild steel surface. The calculated quantum parameters correlated with experimental results, thus, AME can be used as an alternative inhibitor for the protection of mild steel against corrosion.</p></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"7 ","pages":"Article 100344"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949822824002417/pdfft?md5=14ae6aad45f34463e90912be125d83f7&pid=1-s2.0-S2949822824002417-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Biomass of Anthonotha macrophylla leaf extract as a mild steel acid corrosion inhibitor: Experimental and theoretical study\",\"authors\":\"Ifeoma M. Iloamaeke ,&nbsp;Sylvester Ezenwa ,&nbsp;Lukman Olasunkanmi ,&nbsp;Kevin Lobb ,&nbsp;Nnaemeka Nnaji\",\"doi\":\"10.1016/j.nxmate.2024.100344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigated weight loss and electrochemical impedance spectroscopy (EIS) to explore the inhibition potential of <em>Anthonotha macrophylla</em> leaf extract (AME) on mild steel corrosion in 0.5 M H<sub>2</sub>SO<sub>4</sub> medium. The result shows that the highest inhibition efficiency of 90.47 % at 303 K and 80.02 % at 333 K were obtained. At temperatures of 303 K and 333 K, it was discovered that the corrosion rate decreased as the concentration of the AME inhibitor rose from 0.1 g/L <span><math><mrow><mo>(</mo><mn>7.73</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mspace></mspace></mrow></math></span>gcm<sup>−2</sup>hr<sup>−1</sup>) to 0.5 g/L <span><math><mrow><mo>(</mo><mn>2.27</mn><mspace></mspace><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></math></span> gcm<sup>−2</sup>hr<sup>−1</sup>). The result of the EIS measurement is in consistent with that of the weight loss method. Adsorption isotherms portrayed that Tempkin and Freundlich's adsorption isotherms were obeyed. Calculated values of Ea, <span><math><mrow><mo>∆</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>ads</mi></mrow></msub></mrow></math></span> and <span><math><mrow><mo>∆</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>ads</mi></mrow></msub></mrow></math></span> suggested a physical adsorption mechanism. FTIR, SEM-EDX, and XRD measurements revealed that the AME inhibitor efficiently shields the mild steel surface from further corrosion attack by inducing the formation of passivated film on the mild steel surface. The calculated quantum parameters correlated with experimental results, thus, AME can be used as an alternative inhibitor for the protection of mild steel against corrosion.</p></div>\",\"PeriodicalId\":100958,\"journal\":{\"name\":\"Next Materials\",\"volume\":\"7 \",\"pages\":\"Article 100344\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949822824002417/pdfft?md5=14ae6aad45f34463e90912be125d83f7&pid=1-s2.0-S2949822824002417-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949822824002417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822824002417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用失重法和电化学阻抗光谱法(EIS)来探讨大叶石竹叶提取物(AME)在 0.5 M H2SO4 介质中对低碳钢腐蚀的抑制潜力。结果表明,在 303 K 和 333 K 温度下,AME 的最高抑制效率分别为 90.47 % 和 80.02 %。在 303 K 和 333 K 温度下,发现随着 AME 抑制剂浓度从 0.1 g/L (7.73×10-4gcm-2hr-1)升至 0.5 g/L (2.27×10-4 gcm-2hr-1),腐蚀速率降低。EIS 测量的结果与失重法的结果一致。吸附等温线描绘出了 Tempkin 和 Freundlich 吸附等温线。Ea、∆Hads 和 ∆Gads 的计算值表明这是一种物理吸附机制。傅立叶变换红外光谱(FTIR)、扫描电子显微镜(SEM-EDX)和 X 射线衍射(XRD)测量结果表明,AME 抑制剂通过在低碳钢表面形成钝化膜,有效地保护了低碳钢表面,使其免受进一步的腐蚀侵蚀。计算得出的量子参数与实验结果相关,因此 AME 可用作保护低碳钢免受腐蚀的替代抑制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biomass of Anthonotha macrophylla leaf extract as a mild steel acid corrosion inhibitor: Experimental and theoretical study

This study investigated weight loss and electrochemical impedance spectroscopy (EIS) to explore the inhibition potential of Anthonotha macrophylla leaf extract (AME) on mild steel corrosion in 0.5 M H2SO4 medium. The result shows that the highest inhibition efficiency of 90.47 % at 303 K and 80.02 % at 333 K were obtained. At temperatures of 303 K and 333 K, it was discovered that the corrosion rate decreased as the concentration of the AME inhibitor rose from 0.1 g/L (7.73×104gcm−2hr−1) to 0.5 g/L (2.27×104 gcm−2hr−1). The result of the EIS measurement is in consistent with that of the weight loss method. Adsorption isotherms portrayed that Tempkin and Freundlich's adsorption isotherms were obeyed. Calculated values of Ea, Hads and Gads suggested a physical adsorption mechanism. FTIR, SEM-EDX, and XRD measurements revealed that the AME inhibitor efficiently shields the mild steel surface from further corrosion attack by inducing the formation of passivated film on the mild steel surface. The calculated quantum parameters correlated with experimental results, thus, AME can be used as an alternative inhibitor for the protection of mild steel against corrosion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信