{"title":"超支化聚(2-甲基-2-噁唑啉)基防生物污损表面的制备与结构活性研究","authors":"","doi":"10.1016/j.porgcoat.2024.108699","DOIUrl":null,"url":null,"abstract":"<div><p>Elaborating the structure–activity relationship between hyperbranched polymer architecture and the resulting surface antifouling performance is critical for biomedical applications. In this work, a series of poly(2-methyl-2-oxazoline) (PMeOx)-based hyperbranched poly((poly(2-methyl-2-oxazoline) acrylate)-<em>co</em>-(<em>S</em>-(4-vinyl) benzyl <em>S</em>′-propyltrithiocarbonate))s (poly(PMeOxA-<em>co</em>-VBPT)s) with varying degrees of branching (DBs) were synthesized via reversible addition-fragmentation chain transfer polymerization and self-condensing vinyl polymerization (RAFT-SCVP) of poly(2-methyl-2-oxazoline) acrylate (PMeOxA) and <em>S</em>-(4-vinyl) benzyl <em>S</em>′-propyltrithiocarbonate (VBPT). The copolymers were anchored onto surfaces using a material-independent dopamine-assisted co-deposition method. We systematically investigated the hyperbranched structure effects of the copolymers concerning the surface compositions, hydration, morphology, and antifouling properties. Our results demonstrated that the hyperbranched structure provided surfaces with higher PMeOx chain density and superior antifouling properties compared to the linear counterpart. Furthermore, it was found that the antifouling efficacy of the hyperbranched PMeOx-based coatings depended on the surface PMeOx chain densities, which were determined by the DB and PMeOx content in copolymers. Specifically, the PMeOxA(3)-<em>co</em>-VBPT(1)/polydopamine (PDA) coating with optimized formulation displayed the highest resistance to protein, platelet, and cell adsorption (98.4–99.3 % reduction) compared to unmodified surface. Taken together, this work highlights the significant impact of hyperbranched architecture on surface anti-biofouling performances and provides valuable guidelines for manipulating surface properties in applications such as drug delivery, diagnostic, and biosensors.</p></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and structure-activity investigation of hyperbranched poly(2-methyl-2-oxazoline)-based anti-biofouling surfaces\",\"authors\":\"\",\"doi\":\"10.1016/j.porgcoat.2024.108699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Elaborating the structure–activity relationship between hyperbranched polymer architecture and the resulting surface antifouling performance is critical for biomedical applications. In this work, a series of poly(2-methyl-2-oxazoline) (PMeOx)-based hyperbranched poly((poly(2-methyl-2-oxazoline) acrylate)-<em>co</em>-(<em>S</em>-(4-vinyl) benzyl <em>S</em>′-propyltrithiocarbonate))s (poly(PMeOxA-<em>co</em>-VBPT)s) with varying degrees of branching (DBs) were synthesized via reversible addition-fragmentation chain transfer polymerization and self-condensing vinyl polymerization (RAFT-SCVP) of poly(2-methyl-2-oxazoline) acrylate (PMeOxA) and <em>S</em>-(4-vinyl) benzyl <em>S</em>′-propyltrithiocarbonate (VBPT). The copolymers were anchored onto surfaces using a material-independent dopamine-assisted co-deposition method. We systematically investigated the hyperbranched structure effects of the copolymers concerning the surface compositions, hydration, morphology, and antifouling properties. Our results demonstrated that the hyperbranched structure provided surfaces with higher PMeOx chain density and superior antifouling properties compared to the linear counterpart. Furthermore, it was found that the antifouling efficacy of the hyperbranched PMeOx-based coatings depended on the surface PMeOx chain densities, which were determined by the DB and PMeOx content in copolymers. Specifically, the PMeOxA(3)-<em>co</em>-VBPT(1)/polydopamine (PDA) coating with optimized formulation displayed the highest resistance to protein, platelet, and cell adsorption (98.4–99.3 % reduction) compared to unmodified surface. Taken together, this work highlights the significant impact of hyperbranched architecture on surface anti-biofouling performances and provides valuable guidelines for manipulating surface properties in applications such as drug delivery, diagnostic, and biosensors.</p></div>\",\"PeriodicalId\":20834,\"journal\":{\"name\":\"Progress in Organic Coatings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Organic Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300944024004910\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944024004910","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Preparation and structure-activity investigation of hyperbranched poly(2-methyl-2-oxazoline)-based anti-biofouling surfaces
Elaborating the structure–activity relationship between hyperbranched polymer architecture and the resulting surface antifouling performance is critical for biomedical applications. In this work, a series of poly(2-methyl-2-oxazoline) (PMeOx)-based hyperbranched poly((poly(2-methyl-2-oxazoline) acrylate)-co-(S-(4-vinyl) benzyl S′-propyltrithiocarbonate))s (poly(PMeOxA-co-VBPT)s) with varying degrees of branching (DBs) were synthesized via reversible addition-fragmentation chain transfer polymerization and self-condensing vinyl polymerization (RAFT-SCVP) of poly(2-methyl-2-oxazoline) acrylate (PMeOxA) and S-(4-vinyl) benzyl S′-propyltrithiocarbonate (VBPT). The copolymers were anchored onto surfaces using a material-independent dopamine-assisted co-deposition method. We systematically investigated the hyperbranched structure effects of the copolymers concerning the surface compositions, hydration, morphology, and antifouling properties. Our results demonstrated that the hyperbranched structure provided surfaces with higher PMeOx chain density and superior antifouling properties compared to the linear counterpart. Furthermore, it was found that the antifouling efficacy of the hyperbranched PMeOx-based coatings depended on the surface PMeOx chain densities, which were determined by the DB and PMeOx content in copolymers. Specifically, the PMeOxA(3)-co-VBPT(1)/polydopamine (PDA) coating with optimized formulation displayed the highest resistance to protein, platelet, and cell adsorption (98.4–99.3 % reduction) compared to unmodified surface. Taken together, this work highlights the significant impact of hyperbranched architecture on surface anti-biofouling performances and provides valuable guidelines for manipulating surface properties in applications such as drug delivery, diagnostic, and biosensors.
期刊介绍:
The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as:
• Chemical, physical and technological properties of organic coatings and related materials
• Problems and methods of preparation, manufacture and application of these materials
• Performance, testing and analysis.