{"title":"红土和喀斯特铝土矿残渣中稀土元素在温和 pH 值条件下的自选溶解:实现可持续萃取工艺","authors":"Pierre Tamba Oularé , Julien Couturier , Blanche Collin , Emmanuel Assidjo , Laila Rhazi , Léa Causse , Sofiane Zitoune , Sékou Traoré , Kouakou Alphonse Yao , Clément Levard","doi":"10.1016/j.nxsust.2024.100066","DOIUrl":null,"url":null,"abstract":"<div><p>Recovery of rare earth elements from bauxite residues of lateritic versus karstic origin was explored at a pH ranging between 2.7 and 4.5 using a mixture of citric acid and citrate in water. Dissolution yields of up to 82 % for lanthanum and 62 % for yttrium were achieved with excellent selectivity toward iron (a selectivity factor of up to 4200), the main element of bauxite residues. An experimental Box-Behnken statistical design identified the concentration of citric acid/citrate and temperature as key factors controlling the dissolution yield and selectivity of rare earth elements. Observed differences in dissolution yields and selectivity as a function of origin were attributed to differences in the speciation of rare earth elements in the two bauxite residues. It is therefore possible to draw an “à la carte” graph that identified the optimum citric acid/citrate concentrations and dissolution temperatures for dissolution yields and selectivity for the two BRs. This work provides fundamental knowledge for the future development of sustainable processes for the recovery of rare earth elements from bauxite residues derived from bauxites of different origin.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100066"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823624000436/pdfft?md5=bdcd44e6a0d8fe9297cbb934c0269d23&pid=1-s2.0-S2949823624000436-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A la carte dissolution of rare earth elements from lateritic and karstic bauxite residues at mild pH: Toward sustainable extraction processes\",\"authors\":\"Pierre Tamba Oularé , Julien Couturier , Blanche Collin , Emmanuel Assidjo , Laila Rhazi , Léa Causse , Sofiane Zitoune , Sékou Traoré , Kouakou Alphonse Yao , Clément Levard\",\"doi\":\"10.1016/j.nxsust.2024.100066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recovery of rare earth elements from bauxite residues of lateritic versus karstic origin was explored at a pH ranging between 2.7 and 4.5 using a mixture of citric acid and citrate in water. Dissolution yields of up to 82 % for lanthanum and 62 % for yttrium were achieved with excellent selectivity toward iron (a selectivity factor of up to 4200), the main element of bauxite residues. An experimental Box-Behnken statistical design identified the concentration of citric acid/citrate and temperature as key factors controlling the dissolution yield and selectivity of rare earth elements. Observed differences in dissolution yields and selectivity as a function of origin were attributed to differences in the speciation of rare earth elements in the two bauxite residues. It is therefore possible to draw an “à la carte” graph that identified the optimum citric acid/citrate concentrations and dissolution temperatures for dissolution yields and selectivity for the two BRs. This work provides fundamental knowledge for the future development of sustainable processes for the recovery of rare earth elements from bauxite residues derived from bauxites of different origin.</p></div>\",\"PeriodicalId\":100960,\"journal\":{\"name\":\"Next Sustainability\",\"volume\":\"5 \",\"pages\":\"Article 100066\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949823624000436/pdfft?md5=bdcd44e6a0d8fe9297cbb934c0269d23&pid=1-s2.0-S2949823624000436-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949823624000436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949823624000436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A la carte dissolution of rare earth elements from lateritic and karstic bauxite residues at mild pH: Toward sustainable extraction processes
Recovery of rare earth elements from bauxite residues of lateritic versus karstic origin was explored at a pH ranging between 2.7 and 4.5 using a mixture of citric acid and citrate in water. Dissolution yields of up to 82 % for lanthanum and 62 % for yttrium were achieved with excellent selectivity toward iron (a selectivity factor of up to 4200), the main element of bauxite residues. An experimental Box-Behnken statistical design identified the concentration of citric acid/citrate and temperature as key factors controlling the dissolution yield and selectivity of rare earth elements. Observed differences in dissolution yields and selectivity as a function of origin were attributed to differences in the speciation of rare earth elements in the two bauxite residues. It is therefore possible to draw an “à la carte” graph that identified the optimum citric acid/citrate concentrations and dissolution temperatures for dissolution yields and selectivity for the two BRs. This work provides fundamental knowledge for the future development of sustainable processes for the recovery of rare earth elements from bauxite residues derived from bauxites of different origin.