论完整 3-Uniform 超图的哈密顿分解

IF 0.7 3区 数学 Q2 MATHEMATICS
{"title":"论完整 3-Uniform 超图的哈密顿分解","authors":"","doi":"10.1016/j.disc.2024.114197","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the definition of Hamiltonian cycles by Katona and Kierstead, we present a recursive construction of tight Hamiltonian decompositions of complete 3-uniform hypergraphs <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span>, and complete multipartite 3-uniform hypergraph <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span>, where <em>t</em> is the number of partite sets and <em>n</em> is the size of each partite set. For <span><math><mi>t</mi><mo>≡</mo><mn>4</mn><mo>,</mo><mn>8</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>12</mn><mo>)</mo></math></span>, we utilize a tight Hamiltonian decomposition of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span> to construct those of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mi>t</mi></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span> for all positive integers <em>n</em>. By applying our method in conjunction with the current results in literature, we obtain tight Hamiltonian decompositions for infinitely many hypergraphs, namely complete hypergraphs <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span> and complete multipartite hypergraphs <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span> for any positive integer <em>n</em>, and <span><math><mi>t</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>,</mo><mn>5</mn><mo>⋅</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>,</mo><mn>7</mn><mo>⋅</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></math></span>, and <span><math><mn>11</mn><mo>⋅</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></math></span> when <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Hamiltonian decompositions of complete 3-uniform hypergraphs\",\"authors\":\"\",\"doi\":\"10.1016/j.disc.2024.114197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Based on the definition of Hamiltonian cycles by Katona and Kierstead, we present a recursive construction of tight Hamiltonian decompositions of complete 3-uniform hypergraphs <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span>, and complete multipartite 3-uniform hypergraph <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span>, where <em>t</em> is the number of partite sets and <em>n</em> is the size of each partite set. For <span><math><mi>t</mi><mo>≡</mo><mn>4</mn><mo>,</mo><mn>8</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>12</mn><mo>)</mo></math></span>, we utilize a tight Hamiltonian decomposition of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span> to construct those of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mi>t</mi></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span> for all positive integers <em>n</em>. By applying our method in conjunction with the current results in literature, we obtain tight Hamiltonian decompositions for infinitely many hypergraphs, namely complete hypergraphs <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span> and complete multipartite hypergraphs <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span> for any positive integer <em>n</em>, and <span><math><mi>t</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>,</mo><mn>5</mn><mo>⋅</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>,</mo><mn>7</mn><mo>⋅</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></math></span>, and <span><math><mn>11</mn><mo>⋅</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></math></span> when <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span>.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003285\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003285","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

基于卡托纳和基尔斯泰德对哈密顿循环的定义,我们提出了完整三均匀超图Kn(3)和完整多分部三均匀超图Kt(n)(3)的紧哈密顿分解的递归构造,其中t是分部集的个数,n是每个分部集的大小。对于 t≡4,8(mod12),我们利用 Kt(3)的紧密哈密顿分解来构造所有正整数 n 的 K2t(3) 和 Kt(n)(3)。将我们的方法与现有的文献结果结合起来应用,我们得到了无限多超图的紧哈密顿分解,即对于任意正整数 n,当 m≥2 时 t=2m、5⋅2m、7⋅2m 和 11⋅2m 的完整超图 Kt(3) 和完整多方超图 Kt(n)(3)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Hamiltonian decompositions of complete 3-uniform hypergraphs

Based on the definition of Hamiltonian cycles by Katona and Kierstead, we present a recursive construction of tight Hamiltonian decompositions of complete 3-uniform hypergraphs Kn(3), and complete multipartite 3-uniform hypergraph Kt(n)(3), where t is the number of partite sets and n is the size of each partite set. For t4,8(mod12), we utilize a tight Hamiltonian decomposition of Kt(3) to construct those of K2t(3) and Kt(n)(3) for all positive integers n. By applying our method in conjunction with the current results in literature, we obtain tight Hamiltonian decompositions for infinitely many hypergraphs, namely complete hypergraphs Kt(3) and complete multipartite hypergraphs Kt(n)(3) for any positive integer n, and t=2m,52m,72m, and 112m when m2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信