{"title":"室内场景的图像语义分割:调查","authors":"Ronny Velastegui , Maxim Tatarchenko , Sezer Karaoglu , Theo Gevers","doi":"10.1016/j.cviu.2024.104102","DOIUrl":null,"url":null,"abstract":"<div><p>This survey provides a comprehensive evaluation of various deep learning-based segmentation architectures. It covers a wide range of models, from traditional ones like FCN and PSPNet to more modern approaches like SegFormer and FAN. In addition to assessing the methods in terms of segmentation accuracy, we propose to also evaluate the methods in terms of temporal consistency and corruption vulnerability. Most of the existing surveys on semantic segmentation focus on outdoor datasets. In contrast, this survey focuses on indoor scenarios to enhance the applicability of segmentation methods in this specific domain. Furthermore, our evaluation consists of a performance analysis of the methods in prevalent real-world segmentation scenarios that pose particular challenges. These complex situations involve scenes impacted by diverse forms of noise, blur corruptions, camera movements, optical aberrations, among other factors. By jointly exploring the segmentation accuracy, temporal consistency, and corruption vulnerability in challenging real-world situations, our survey offers insights that go beyond existing surveys, facilitating the understanding and development of better image segmentation methods for indoor scenes.</p></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1077314224001838/pdfft?md5=2d19fe112ea2fe5f2c0ab7afa65c3059&pid=1-s2.0-S1077314224001838-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Image semantic segmentation of indoor scenes: A survey\",\"authors\":\"Ronny Velastegui , Maxim Tatarchenko , Sezer Karaoglu , Theo Gevers\",\"doi\":\"10.1016/j.cviu.2024.104102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This survey provides a comprehensive evaluation of various deep learning-based segmentation architectures. It covers a wide range of models, from traditional ones like FCN and PSPNet to more modern approaches like SegFormer and FAN. In addition to assessing the methods in terms of segmentation accuracy, we propose to also evaluate the methods in terms of temporal consistency and corruption vulnerability. Most of the existing surveys on semantic segmentation focus on outdoor datasets. In contrast, this survey focuses on indoor scenarios to enhance the applicability of segmentation methods in this specific domain. Furthermore, our evaluation consists of a performance analysis of the methods in prevalent real-world segmentation scenarios that pose particular challenges. These complex situations involve scenes impacted by diverse forms of noise, blur corruptions, camera movements, optical aberrations, among other factors. By jointly exploring the segmentation accuracy, temporal consistency, and corruption vulnerability in challenging real-world situations, our survey offers insights that go beyond existing surveys, facilitating the understanding and development of better image segmentation methods for indoor scenes.</p></div>\",\"PeriodicalId\":50633,\"journal\":{\"name\":\"Computer Vision and Image Understanding\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1077314224001838/pdfft?md5=2d19fe112ea2fe5f2c0ab7afa65c3059&pid=1-s2.0-S1077314224001838-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision and Image Understanding\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077314224001838\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224001838","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
本调查对各种基于深度学习的分割架构进行了全面评估。它涵盖了各种模型,从 FCN 和 PSPNet 等传统模型到 SegFormer 和 FAN 等更现代的方法。除了从分割准确性的角度对这些方法进行评估外,我们还建议从时间一致性和损坏脆弱性的角度对这些方法进行评估。现有的语义分割调查大多集中在室外数据集上。相比之下,本调查侧重于室内场景,以提高分割方法在这一特定领域的适用性。此外,我们的评估还包括对这些方法在现实世界中常见的分割场景中的性能分析,这些场景带来了特殊的挑战。这些复杂的场景受到各种形式的噪声、模糊损坏、相机移动、光学像差等因素的影响。通过共同探讨具有挑战性的真实场景中的分割准确性、时间一致性和易损坏性,我们的调查提供了超越现有调查的见解,有助于理解和开发更好的室内场景图像分割方法。
Image semantic segmentation of indoor scenes: A survey
This survey provides a comprehensive evaluation of various deep learning-based segmentation architectures. It covers a wide range of models, from traditional ones like FCN and PSPNet to more modern approaches like SegFormer and FAN. In addition to assessing the methods in terms of segmentation accuracy, we propose to also evaluate the methods in terms of temporal consistency and corruption vulnerability. Most of the existing surveys on semantic segmentation focus on outdoor datasets. In contrast, this survey focuses on indoor scenarios to enhance the applicability of segmentation methods in this specific domain. Furthermore, our evaluation consists of a performance analysis of the methods in prevalent real-world segmentation scenarios that pose particular challenges. These complex situations involve scenes impacted by diverse forms of noise, blur corruptions, camera movements, optical aberrations, among other factors. By jointly exploring the segmentation accuracy, temporal consistency, and corruption vulnerability in challenging real-world situations, our survey offers insights that go beyond existing surveys, facilitating the understanding and development of better image segmentation methods for indoor scenes.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems