正极颗粒涂层均匀性对锂离子电池性能的影响

IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL
{"title":"正极颗粒涂层均匀性对锂离子电池性能的影响","authors":"","doi":"10.1016/j.apt.2024.104608","DOIUrl":null,"url":null,"abstract":"<div><p>Ensuring the stability of cathodes under high voltage (&gt;4.3 V vs. Li/Li + ) necessitates particle-scale surface protection. Research varies on the optimal structure, and systematic studies on the impact of nanoscale coating coverage on cathode particle surfaces and stability are lacking. This study presents a quantitative analysis of coating homogeneity dependency on cathode particles and their stability under high voltage conditions. A metal alkoxide precursor-based coating methodology was used, manipulating the coating structure by understanding the pH dependence of the zeta potential for core particles and altering the precursor evaporation rate. Ta-substituted Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> was chosen as the coating material on Li(Ni<sub>1/3</sub>,Co<sub>1/3</sub>,Mn<sub>1/3</sub>)O<sub>2</sub> cathode particles, varying the coating structure while maintaining the same coating concentration. Coating structure was verified using X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). Results showed that cathode particles with more homogeneous coatings exhibited significantly improved cycle stability and lower charge transfer resistance at potentials above 3.9 V. Optimizing coating homogeneity can significantly enhance battery performance, offering insights for more efficient lithium-ion batteries.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S092188312400284X/pdfft?md5=bb4a69ae9e8b1e6e345539168199dd7b&pid=1-s2.0-S092188312400284X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effects of coating layer homogeneity of cathode particles on lithium ion battery performance\",\"authors\":\"\",\"doi\":\"10.1016/j.apt.2024.104608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ensuring the stability of cathodes under high voltage (&gt;4.3 V vs. Li/Li + ) necessitates particle-scale surface protection. Research varies on the optimal structure, and systematic studies on the impact of nanoscale coating coverage on cathode particle surfaces and stability are lacking. This study presents a quantitative analysis of coating homogeneity dependency on cathode particles and their stability under high voltage conditions. A metal alkoxide precursor-based coating methodology was used, manipulating the coating structure by understanding the pH dependence of the zeta potential for core particles and altering the precursor evaporation rate. Ta-substituted Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> was chosen as the coating material on Li(Ni<sub>1/3</sub>,Co<sub>1/3</sub>,Mn<sub>1/3</sub>)O<sub>2</sub> cathode particles, varying the coating structure while maintaining the same coating concentration. Coating structure was verified using X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). Results showed that cathode particles with more homogeneous coatings exhibited significantly improved cycle stability and lower charge transfer resistance at potentials above 3.9 V. Optimizing coating homogeneity can significantly enhance battery performance, offering insights for more efficient lithium-ion batteries.</p></div>\",\"PeriodicalId\":7232,\"journal\":{\"name\":\"Advanced Powder Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S092188312400284X/pdfft?md5=bb4a69ae9e8b1e6e345539168199dd7b&pid=1-s2.0-S092188312400284X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092188312400284X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092188312400284X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

要确保阴极在高电压(4.3 V vs. Li/Li +)下的稳定性,就必须对颗粒表面进行保护。有关最佳结构的研究各不相同,而有关纳米级涂层覆盖率对阴极颗粒表面和稳定性影响的系统性研究则十分缺乏。本研究定量分析了涂层均匀性对阴极颗粒的依赖性及其在高压条件下的稳定性。研究采用了一种基于金属氧化物前驱体的镀膜方法,通过了解核心颗粒 zeta 电位的 pH 依赖性和改变前驱体蒸发速率来操纵镀膜结构。选择 Ta 取代的 Li7La3Zr2O12 作为 Li(Ni1/3,Co1/3,Mn1/3)O2 阴极粒子的涂层材料,在保持相同涂层浓度的情况下改变涂层结构。使用 X 射线荧光 (XRF)、X 射线光电子能谱 (XPS) 和电化学阻抗能谱 (EIS) 验证了涂层结构。结果表明,涂层更均匀的正极颗粒在电位高于 3.9 V 时的循环稳定性明显提高,电荷转移电阻更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effects of coating layer homogeneity of cathode particles on lithium ion battery performance

Effects of coating layer homogeneity of cathode particles on lithium ion battery performance

Ensuring the stability of cathodes under high voltage (>4.3 V vs. Li/Li + ) necessitates particle-scale surface protection. Research varies on the optimal structure, and systematic studies on the impact of nanoscale coating coverage on cathode particle surfaces and stability are lacking. This study presents a quantitative analysis of coating homogeneity dependency on cathode particles and their stability under high voltage conditions. A metal alkoxide precursor-based coating methodology was used, manipulating the coating structure by understanding the pH dependence of the zeta potential for core particles and altering the precursor evaporation rate. Ta-substituted Li7La3Zr2O12 was chosen as the coating material on Li(Ni1/3,Co1/3,Mn1/3)O2 cathode particles, varying the coating structure while maintaining the same coating concentration. Coating structure was verified using X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). Results showed that cathode particles with more homogeneous coatings exhibited significantly improved cycle stability and lower charge transfer resistance at potentials above 3.9 V. Optimizing coating homogeneity can significantly enhance battery performance, offering insights for more efficient lithium-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Powder Technology
Advanced Powder Technology 工程技术-工程:化工
CiteScore
9.50
自引率
7.70%
发文量
424
审稿时长
55 days
期刊介绍: The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide. The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them. Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信