{"title":"论有限域上代数几何编码的线性互补对","authors":"","doi":"10.1016/j.disc.2024.114193","DOIUrl":null,"url":null,"abstract":"<div><p>Linear complementary dual (LCD) codes and linear complementary pairs (LCP) of codes have been proposed for new applications as countermeasures against side-channel attacks (SCA) and fault injection attacks (FIA) in the context of direct sum masking (DSM). The countermeasure against FIA may lead to a vulnerability for SCA when the whole algorithm needs to be masked (in environments like smart cards). This led to a variant of the LCD and LCP problems, where several results were obtained intensively for LCD codes, but only partial results were derived for LCP codes. Given the gap between the thin results and their particular importance, this paper aims to reduce this by further studying the LCP of codes in special code families and, precisely, the characterization and construction mechanism of LCP codes of algebraic geometry codes over finite fields. Notably, we propose constructing explicit LCP of codes from elliptic curves. Besides, we also study the security parameters of the derived LCP of codes <span><math><mo>(</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> (notably for cyclic codes), which are given by the minimum distances <span><math><mi>d</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> and <span><math><mi>d</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>⊥</mo></mrow></msup><mo>)</mo></math></span>. Further, we show that for LCP algebraic geometry codes <span><math><mo>(</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span>, the dual code <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⊥</mo></mrow></msup></math></span> is equivalent to <span><math><mi>D</mi></math></span> under some specific conditions we exhibit. Finally, we investigate whether MDS LCP of algebraic geometry codes exist (MDS codes are among the most important in coding theory due to their theoretical significance and practical interests). Construction schemes for obtaining LCD codes from any algebraic curve were given in 2018 by Mesnager, Tang and Qi in <span><span>[11]</span></span>. To our knowledge, it is the first time LCP of algebraic geometry codes has been studied.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On linear complementary pairs of algebraic geometry codes over finite fields\",\"authors\":\"\",\"doi\":\"10.1016/j.disc.2024.114193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Linear complementary dual (LCD) codes and linear complementary pairs (LCP) of codes have been proposed for new applications as countermeasures against side-channel attacks (SCA) and fault injection attacks (FIA) in the context of direct sum masking (DSM). The countermeasure against FIA may lead to a vulnerability for SCA when the whole algorithm needs to be masked (in environments like smart cards). This led to a variant of the LCD and LCP problems, where several results were obtained intensively for LCD codes, but only partial results were derived for LCP codes. Given the gap between the thin results and their particular importance, this paper aims to reduce this by further studying the LCP of codes in special code families and, precisely, the characterization and construction mechanism of LCP codes of algebraic geometry codes over finite fields. Notably, we propose constructing explicit LCP of codes from elliptic curves. Besides, we also study the security parameters of the derived LCP of codes <span><math><mo>(</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> (notably for cyclic codes), which are given by the minimum distances <span><math><mi>d</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> and <span><math><mi>d</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>⊥</mo></mrow></msup><mo>)</mo></math></span>. Further, we show that for LCP algebraic geometry codes <span><math><mo>(</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span>, the dual code <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⊥</mo></mrow></msup></math></span> is equivalent to <span><math><mi>D</mi></math></span> under some specific conditions we exhibit. Finally, we investigate whether MDS LCP of algebraic geometry codes exist (MDS codes are among the most important in coding theory due to their theoretical significance and practical interests). Construction schemes for obtaining LCD codes from any algebraic curve were given in 2018 by Mesnager, Tang and Qi in <span><span>[11]</span></span>. To our knowledge, it is the first time LCP of algebraic geometry codes has been studied.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003248\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003248","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On linear complementary pairs of algebraic geometry codes over finite fields
Linear complementary dual (LCD) codes and linear complementary pairs (LCP) of codes have been proposed for new applications as countermeasures against side-channel attacks (SCA) and fault injection attacks (FIA) in the context of direct sum masking (DSM). The countermeasure against FIA may lead to a vulnerability for SCA when the whole algorithm needs to be masked (in environments like smart cards). This led to a variant of the LCD and LCP problems, where several results were obtained intensively for LCD codes, but only partial results were derived for LCP codes. Given the gap between the thin results and their particular importance, this paper aims to reduce this by further studying the LCP of codes in special code families and, precisely, the characterization and construction mechanism of LCP codes of algebraic geometry codes over finite fields. Notably, we propose constructing explicit LCP of codes from elliptic curves. Besides, we also study the security parameters of the derived LCP of codes (notably for cyclic codes), which are given by the minimum distances and . Further, we show that for LCP algebraic geometry codes , the dual code is equivalent to under some specific conditions we exhibit. Finally, we investigate whether MDS LCP of algebraic geometry codes exist (MDS codes are among the most important in coding theory due to their theoretical significance and practical interests). Construction schemes for obtaining LCD codes from any algebraic curve were given in 2018 by Mesnager, Tang and Qi in [11]. To our knowledge, it is the first time LCP of algebraic geometry codes has been studied.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.