{"title":"南布协变多体理论 I:惯性逼近","authors":"M. Drissi , A. Rios , C. Barbieri","doi":"10.1016/j.aop.2024.169729","DOIUrl":null,"url":null,"abstract":"<div><p>Symmetry-breaking considerations play an important role in allowing reliable and accurate predictions of complex systems in quantum many-body simulations. The general theory of perturbations in symmetry-breaking phases is nonetheless intrinsically more involved than in the unbroken phase due to non-vanishing anomalous Green’s functions or anomalous quasiparticle interactions. In the present paper, we develop a formulation of many-body theory at non-zero temperature which is explicitly covariant with respect to a group containing Bogoliubov transformations. Based on the concept of Nambu tensors, we derive a factorisation of standard Feynman diagrams that is valid for a general Hamiltonian. The resulting factorised amplitudes are indexed over the set of un-oriented Feynman diagrams with fully antisymmetric vertices. We argue that, within this framework, the design of symmetry-breaking many-body approximations is simplified.</p></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"469 ","pages":"Article 169729"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nambu-covariant many-body theory I: Perturbative approximations\",\"authors\":\"M. Drissi , A. Rios , C. Barbieri\",\"doi\":\"10.1016/j.aop.2024.169729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Symmetry-breaking considerations play an important role in allowing reliable and accurate predictions of complex systems in quantum many-body simulations. The general theory of perturbations in symmetry-breaking phases is nonetheless intrinsically more involved than in the unbroken phase due to non-vanishing anomalous Green’s functions or anomalous quasiparticle interactions. In the present paper, we develop a formulation of many-body theory at non-zero temperature which is explicitly covariant with respect to a group containing Bogoliubov transformations. Based on the concept of Nambu tensors, we derive a factorisation of standard Feynman diagrams that is valid for a general Hamiltonian. The resulting factorised amplitudes are indexed over the set of un-oriented Feynman diagrams with fully antisymmetric vertices. We argue that, within this framework, the design of symmetry-breaking many-body approximations is simplified.</p></div>\",\"PeriodicalId\":8249,\"journal\":{\"name\":\"Annals of Physics\",\"volume\":\"469 \",\"pages\":\"Article 169729\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003491624001374\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491624001374","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Nambu-covariant many-body theory I: Perturbative approximations
Symmetry-breaking considerations play an important role in allowing reliable and accurate predictions of complex systems in quantum many-body simulations. The general theory of perturbations in symmetry-breaking phases is nonetheless intrinsically more involved than in the unbroken phase due to non-vanishing anomalous Green’s functions or anomalous quasiparticle interactions. In the present paper, we develop a formulation of many-body theory at non-zero temperature which is explicitly covariant with respect to a group containing Bogoliubov transformations. Based on the concept of Nambu tensors, we derive a factorisation of standard Feynman diagrams that is valid for a general Hamiltonian. The resulting factorised amplitudes are indexed over the set of un-oriented Feynman diagrams with fully antisymmetric vertices. We argue that, within this framework, the design of symmetry-breaking many-body approximations is simplified.
期刊介绍:
Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance.
The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.