{"title":"瓷质炻器中的花岗岩选矿残留物:对工艺性能的影响","authors":"Chiara Molinari , Andreea Sima , Matteo Cavina , Guia Guarini , Sonia Conte , Stefania Albonetti , Enrique Sanchez , Eugeni Cañas , Michele Dondi , Chiara Zanelli","doi":"10.1016/j.oceram.2024.100651","DOIUrl":null,"url":null,"abstract":"<div><p>Granite extraction waste represents an interesting alternative material for porcelain stoneware production, but information on its influence presents several gaps. For this reason, two different wastes were selected: a coarser iron-rich material from magnetic separation and a finer one from conveyance and abatement systems. Both were physically and chemically characterized. Batches were formulated by partial substitution of feldspar and technological behaviour of bodies was assessed by simulating the industrial manufacture at laboratory scale. Tiles were shaped by uniaxial pressure and fired by fast firing in electric roller kiln. The effect of waste addition was evaluated during the whole production process. Fired samples were characterized in terms of technological properties, mineralogical composition and microstructure evolution. The formulation optimization reduces firing temperature getting commercial technological constraints. A further increase of finer waste content affects compaction and mechanical strength. The presence of micaceous particles after the firing process may act as cracks initiation.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"19 ","pages":"Article 100651"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524001159/pdfft?md5=4ff3523128e85a66bb08e8b290992467&pid=1-s2.0-S2666539524001159-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Residues from beneficiation of granite in porcelain stoneware: Effects on technological properties\",\"authors\":\"Chiara Molinari , Andreea Sima , Matteo Cavina , Guia Guarini , Sonia Conte , Stefania Albonetti , Enrique Sanchez , Eugeni Cañas , Michele Dondi , Chiara Zanelli\",\"doi\":\"10.1016/j.oceram.2024.100651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Granite extraction waste represents an interesting alternative material for porcelain stoneware production, but information on its influence presents several gaps. For this reason, two different wastes were selected: a coarser iron-rich material from magnetic separation and a finer one from conveyance and abatement systems. Both were physically and chemically characterized. Batches were formulated by partial substitution of feldspar and technological behaviour of bodies was assessed by simulating the industrial manufacture at laboratory scale. Tiles were shaped by uniaxial pressure and fired by fast firing in electric roller kiln. The effect of waste addition was evaluated during the whole production process. Fired samples were characterized in terms of technological properties, mineralogical composition and microstructure evolution. The formulation optimization reduces firing temperature getting commercial technological constraints. A further increase of finer waste content affects compaction and mechanical strength. The presence of micaceous particles after the firing process may act as cracks initiation.</p></div>\",\"PeriodicalId\":34140,\"journal\":{\"name\":\"Open Ceramics\",\"volume\":\"19 \",\"pages\":\"Article 100651\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666539524001159/pdfft?md5=4ff3523128e85a66bb08e8b290992467&pid=1-s2.0-S2666539524001159-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ceramics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666539524001159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539524001159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Residues from beneficiation of granite in porcelain stoneware: Effects on technological properties
Granite extraction waste represents an interesting alternative material for porcelain stoneware production, but information on its influence presents several gaps. For this reason, two different wastes were selected: a coarser iron-rich material from magnetic separation and a finer one from conveyance and abatement systems. Both were physically and chemically characterized. Batches were formulated by partial substitution of feldspar and technological behaviour of bodies was assessed by simulating the industrial manufacture at laboratory scale. Tiles were shaped by uniaxial pressure and fired by fast firing in electric roller kiln. The effect of waste addition was evaluated during the whole production process. Fired samples were characterized in terms of technological properties, mineralogical composition and microstructure evolution. The formulation optimization reduces firing temperature getting commercial technological constraints. A further increase of finer waste content affects compaction and mechanical strength. The presence of micaceous particles after the firing process may act as cracks initiation.