通过简单的干法球磨和 K2CO3 物理添加,在 Li4SiO4 吸附剂上实现二氧化碳的高温捕获

{"title":"通过简单的干法球磨和 K2CO3 物理添加,在 Li4SiO4 吸附剂上实现二氧化碳的高温捕获","authors":"","doi":"10.1016/j.ccst.2024.100255","DOIUrl":null,"url":null,"abstract":"<div><p>The reversible CO<sub>2</sub> absorption/desorption of lithium orthosilicate (Li<sub>4</sub>SiO<sub>4</sub>) sorbents holds potential for high temperature capture of CO<sub>2</sub> from hot flue gases, sorption-enhanced reforming and solar thermochemical energy storage. In this study, we have prepared a series of Li<sub>4</sub>SiO<sub>4</sub> sorbents using a combination of K<sub>2</sub>CO<sub>3</sub> addition and dry ball-milling procedure to improve the relatively slow kinetics under low CO<sub>2</sub> partial pressure conditions. The synergistic effects of dry ball-milling and K<sub>2</sub>CO<sub>3</sub> addition on the intrinsic properties of Li<sub>4</sub>SiO<sub>4</sub> sorbents were explored by thermogravimetric analysis and structural characterizations. Thermogravimetric analysis indicate that the highest CO<sub>2</sub> uptakes were achieved with dry ball-milling combined with K<sub>2</sub>CO<sub>3</sub> physical addition. The structural characterizations further reveal that this sorbent (P-3K-1.5 M) had the smallest crystallite/particle size, largest surface area, and highest availability of surface alkaline-sites. The kinetics analysis also demonstrates that P-3K-1.5 M exhibited the fastest sorption kinetics during a double process. Additionally, P-3K-1.5 M maintained a high capacity over 10 sorption/desorption cycles. Therefore, this synthesis technique, which is simple, cost-effective, and easily scalable, shows great promise for high-temperature CO<sub>2</sub> capture.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000678/pdfft?md5=adfef578d323d28b515a25799f8a22e8&pid=1-s2.0-S2772656824000678-main.pdf","citationCount":"0","resultStr":"{\"title\":\"High temperature capture of CO2 on Li4SiO4 sorbents via a simple dry ball-milling coupled with K2CO3 physical addition\",\"authors\":\"\",\"doi\":\"10.1016/j.ccst.2024.100255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The reversible CO<sub>2</sub> absorption/desorption of lithium orthosilicate (Li<sub>4</sub>SiO<sub>4</sub>) sorbents holds potential for high temperature capture of CO<sub>2</sub> from hot flue gases, sorption-enhanced reforming and solar thermochemical energy storage. In this study, we have prepared a series of Li<sub>4</sub>SiO<sub>4</sub> sorbents using a combination of K<sub>2</sub>CO<sub>3</sub> addition and dry ball-milling procedure to improve the relatively slow kinetics under low CO<sub>2</sub> partial pressure conditions. The synergistic effects of dry ball-milling and K<sub>2</sub>CO<sub>3</sub> addition on the intrinsic properties of Li<sub>4</sub>SiO<sub>4</sub> sorbents were explored by thermogravimetric analysis and structural characterizations. Thermogravimetric analysis indicate that the highest CO<sub>2</sub> uptakes were achieved with dry ball-milling combined with K<sub>2</sub>CO<sub>3</sub> physical addition. The structural characterizations further reveal that this sorbent (P-3K-1.5 M) had the smallest crystallite/particle size, largest surface area, and highest availability of surface alkaline-sites. The kinetics analysis also demonstrates that P-3K-1.5 M exhibited the fastest sorption kinetics during a double process. Additionally, P-3K-1.5 M maintained a high capacity over 10 sorption/desorption cycles. Therefore, this synthesis technique, which is simple, cost-effective, and easily scalable, shows great promise for high-temperature CO<sub>2</sub> capture.</p></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772656824000678/pdfft?md5=adfef578d323d28b515a25799f8a22e8&pid=1-s2.0-S2772656824000678-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656824000678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824000678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

正硅酸锂(Li4SiO4)吸附剂对二氧化碳的可逆吸收/解吸为高温烟气中二氧化碳的高温捕集、吸附增强重整和太阳能热化学储能提供了潜力。在本研究中,我们采用添加 K2CO3 和干法球磨相结合的方法制备了一系列 Li4SiO4 吸附剂,以改善其在低二氧化碳分压条件下相对较慢的动力学特性。通过热重分析和结构表征,探讨了干法球磨和添加 K2CO3 对 Li4SiO4 吸附剂内在性质的协同效应。热重分析表明,干法球磨结合 K2CO3 物理添加可实现最高的二氧化碳吸收率。结构表征进一步表明,这种吸附剂(P-3K-1.5 M)的结晶/颗粒尺寸最小,比表面积最大,表面碱性位点的可用性最高。动力学分析还表明,P-3K-1.5 M 在双重过程中表现出最快的吸附动力学。此外,P-3K-1.5 M 还能在 10 次吸附/解吸循环中保持较高的吸附容量。因此,这种合成技术简单、成本效益高且易于扩展,在高温捕获二氧化碳方面大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High temperature capture of CO2 on Li4SiO4 sorbents via a simple dry ball-milling coupled with K2CO3 physical addition

The reversible CO2 absorption/desorption of lithium orthosilicate (Li4SiO4) sorbents holds potential for high temperature capture of CO2 from hot flue gases, sorption-enhanced reforming and solar thermochemical energy storage. In this study, we have prepared a series of Li4SiO4 sorbents using a combination of K2CO3 addition and dry ball-milling procedure to improve the relatively slow kinetics under low CO2 partial pressure conditions. The synergistic effects of dry ball-milling and K2CO3 addition on the intrinsic properties of Li4SiO4 sorbents were explored by thermogravimetric analysis and structural characterizations. Thermogravimetric analysis indicate that the highest CO2 uptakes were achieved with dry ball-milling combined with K2CO3 physical addition. The structural characterizations further reveal that this sorbent (P-3K-1.5 M) had the smallest crystallite/particle size, largest surface area, and highest availability of surface alkaline-sites. The kinetics analysis also demonstrates that P-3K-1.5 M exhibited the fastest sorption kinetics during a double process. Additionally, P-3K-1.5 M maintained a high capacity over 10 sorption/desorption cycles. Therefore, this synthesis technique, which is simple, cost-effective, and easily scalable, shows great promise for high-temperature CO2 capture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信