{"title":"关于具有微分形式的全非线性椭圆方程","authors":"Hao Fang, Biao Ma","doi":"10.1016/j.aim.2024.109867","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a fully nonlinear PDE with a differential form, which unifies several important equations in Kähler geometry including Monge-Ampère equations, <em>J</em>-equations, inverse <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> equations, and deformed Hermitian Yang-Mills (dHYM) equations. We pose some natural positivity conditions on Λ, and prove analytical and algebraic criterion for the solvability of the equation. Our results generalize previous works of G. Chen, J. Song, Datar-Pingali and others. As an application, we prove a conjecture of Collins-Jacob-Yau for dHYM equations with small global phase.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a fully nonlinear elliptic equation with differential forms\",\"authors\":\"Hao Fang, Biao Ma\",\"doi\":\"10.1016/j.aim.2024.109867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a fully nonlinear PDE with a differential form, which unifies several important equations in Kähler geometry including Monge-Ampère equations, <em>J</em>-equations, inverse <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> equations, and deformed Hermitian Yang-Mills (dHYM) equations. We pose some natural positivity conditions on Λ, and prove analytical and algebraic criterion for the solvability of the equation. Our results generalize previous works of G. Chen, J. Song, Datar-Pingali and others. As an application, we prove a conjecture of Collins-Jacob-Yau for dHYM equations with small global phase.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824003827\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824003827","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
On a fully nonlinear elliptic equation with differential forms
We introduce a fully nonlinear PDE with a differential form, which unifies several important equations in Kähler geometry including Monge-Ampère equations, J-equations, inverse equations, and deformed Hermitian Yang-Mills (dHYM) equations. We pose some natural positivity conditions on Λ, and prove analytical and algebraic criterion for the solvability of the equation. Our results generalize previous works of G. Chen, J. Song, Datar-Pingali and others. As an application, we prove a conjecture of Collins-Jacob-Yau for dHYM equations with small global phase.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.