关于具有微分形式的全非线性椭圆方程

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hao Fang, Biao Ma
{"title":"关于具有微分形式的全非线性椭圆方程","authors":"Hao Fang,&nbsp;Biao Ma","doi":"10.1016/j.aim.2024.109867","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a fully nonlinear PDE with a differential form, which unifies several important equations in Kähler geometry including Monge-Ampère equations, <em>J</em>-equations, inverse <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> equations, and deformed Hermitian Yang-Mills (dHYM) equations. We pose some natural positivity conditions on Λ, and prove analytical and algebraic criterion for the solvability of the equation. Our results generalize previous works of G. Chen, J. Song, Datar-Pingali and others. As an application, we prove a conjecture of Collins-Jacob-Yau for dHYM equations with small global phase.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a fully nonlinear elliptic equation with differential forms\",\"authors\":\"Hao Fang,&nbsp;Biao Ma\",\"doi\":\"10.1016/j.aim.2024.109867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a fully nonlinear PDE with a differential form, which unifies several important equations in Kähler geometry including Monge-Ampère equations, <em>J</em>-equations, inverse <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> equations, and deformed Hermitian Yang-Mills (dHYM) equations. We pose some natural positivity conditions on Λ, and prove analytical and algebraic criterion for the solvability of the equation. Our results generalize previous works of G. Chen, J. Song, Datar-Pingali and others. As an application, we prove a conjecture of Collins-Jacob-Yau for dHYM equations with small global phase.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824003827\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824003827","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一个具有微分形式的全非线性 PDE,它统一了凯勒几何中的几个重要方程,包括 Monge-Ampère 方程、J 方程、反 σk 方程和变形赫尔密特杨-米尔斯(dHYM)方程。我们提出了一些关于Λ的自然实在性条件,并证明了方程可解性的分析和代数准则。我们的结果概括了 G. Chen、J. Song、Datar-Pingali 等人之前的研究成果。作为应用,我们证明了柯林斯-雅各布-尤对具有小全局相位的 dHYM 方程的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a fully nonlinear elliptic equation with differential forms

We introduce a fully nonlinear PDE with a differential form, which unifies several important equations in Kähler geometry including Monge-Ampère equations, J-equations, inverse σk equations, and deformed Hermitian Yang-Mills (dHYM) equations. We pose some natural positivity conditions on Λ, and prove analytical and algebraic criterion for the solvability of the equation. Our results generalize previous works of G. Chen, J. Song, Datar-Pingali and others. As an application, we prove a conjecture of Collins-Jacob-Yau for dHYM equations with small global phase.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信