{"title":"管理螺旋桨和轮式螺旋桨的 Koszul 操作板","authors":"Kurt Stoeckl","doi":"10.1016/j.aim.2024.109869","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we construct groupoid coloured operads governing props and wheeled props, and show they are Koszul. This is accomplished by new biased definitions for (wheeled) props, and an extension of the theory of Groebner bases for operads to apply to groupoid coloured operads. Using the Koszul machine, we define homotopy (wheeled) props, and show they are not formed by polytope based models. Finally, using homotopy transfer theory, we construct Massey products for (wheeled) props, show these products characterise the formality of these structures, and re-obtain a theorem of Mac Lane on the existence of higher homotopies of (co)commutative Hopf algebras.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001870824003840/pdfft?md5=a276c43f8754cc2d38ff043f652c7163&pid=1-s2.0-S0001870824003840-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Koszul operads governing props and wheeled props\",\"authors\":\"Kurt Stoeckl\",\"doi\":\"10.1016/j.aim.2024.109869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we construct groupoid coloured operads governing props and wheeled props, and show they are Koszul. This is accomplished by new biased definitions for (wheeled) props, and an extension of the theory of Groebner bases for operads to apply to groupoid coloured operads. Using the Koszul machine, we define homotopy (wheeled) props, and show they are not formed by polytope based models. Finally, using homotopy transfer theory, we construct Massey products for (wheeled) props, show these products characterise the formality of these structures, and re-obtain a theorem of Mac Lane on the existence of higher homotopies of (co)commutative Hopf algebras.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0001870824003840/pdfft?md5=a276c43f8754cc2d38ff043f652c7163&pid=1-s2.0-S0001870824003840-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824003840\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824003840","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
In this paper, we construct groupoid coloured operads governing props and wheeled props, and show they are Koszul. This is accomplished by new biased definitions for (wheeled) props, and an extension of the theory of Groebner bases for operads to apply to groupoid coloured operads. Using the Koszul machine, we define homotopy (wheeled) props, and show they are not formed by polytope based models. Finally, using homotopy transfer theory, we construct Massey products for (wheeled) props, show these products characterise the formality of these structures, and re-obtain a theorem of Mac Lane on the existence of higher homotopies of (co)commutative Hopf algebras.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.