针对高密度比两相流的非结构化几何流体力学方法的不一致性

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jun Liu , Tobias Tolle , Davide Zuzio , Jean-Luc Estivalèzes , Santiago Marquez Damian , Tomislav Marić
{"title":"针对高密度比两相流的非结构化几何流体力学方法的不一致性","authors":"Jun Liu ,&nbsp;Tobias Tolle ,&nbsp;Davide Zuzio ,&nbsp;Jean-Luc Estivalèzes ,&nbsp;Santiago Marquez Damian ,&nbsp;Tomislav Marić","doi":"10.1016/j.compfluid.2024.106375","DOIUrl":null,"url":null,"abstract":"<div><p>Geometric flux-based Volume-of-Fluid (VOF) methods (Marić et al., 2020) are widely considered consistent in handling two-phase flows with high density ratios. However, although the conservation of mass and momentum is consistent for two-phase incompressible single-field Navier–Stokes equations without phase-change (Liu et al., 2023), discretization may easily introduce inconsistencies that result in very large errors or catastrophic failure. We apply the consistency conditions derived for the <span><math><mi>ρ</mi></math></span>LENT unstructured Level Set/Front Tracking method (Liu et al., 2023) to flux-based geometric VOF methods (Marić et al., 2020), and implement our discretization into the plicRDF-isoAdvector geometrical VOF method (Roenby et al., 2016). We find that computing the mass flux by scaling the geometrically computed fluxed phase-specific volume can ensure equivalence between the mass conservation equation and the phase indicator (volume conservation) if consistent discretization schemes are chosen for the temporal and convective term. Based on the analysis of discretization errors, we suggest a consistent combination of the temporal discretization scheme and the interpolation scheme for the momentum convection term. We confirm the consistency by solving an auxiliary mass conservation equation with a geometrical calculation of the face-centered density (Liu et al., 2023). We prove the equivalence between these two approaches mathematically and verify and validate their numerical stability for density ratios within [1, <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>] and viscosity ratios within [<span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>].</p></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"281 ","pages":"Article 106375"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S004579302400207X/pdfft?md5=d79e98a6cf675e23503f97b1bf9e1d18&pid=1-s2.0-S004579302400207X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios\",\"authors\":\"Jun Liu ,&nbsp;Tobias Tolle ,&nbsp;Davide Zuzio ,&nbsp;Jean-Luc Estivalèzes ,&nbsp;Santiago Marquez Damian ,&nbsp;Tomislav Marić\",\"doi\":\"10.1016/j.compfluid.2024.106375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Geometric flux-based Volume-of-Fluid (VOF) methods (Marić et al., 2020) are widely considered consistent in handling two-phase flows with high density ratios. However, although the conservation of mass and momentum is consistent for two-phase incompressible single-field Navier–Stokes equations without phase-change (Liu et al., 2023), discretization may easily introduce inconsistencies that result in very large errors or catastrophic failure. We apply the consistency conditions derived for the <span><math><mi>ρ</mi></math></span>LENT unstructured Level Set/Front Tracking method (Liu et al., 2023) to flux-based geometric VOF methods (Marić et al., 2020), and implement our discretization into the plicRDF-isoAdvector geometrical VOF method (Roenby et al., 2016). We find that computing the mass flux by scaling the geometrically computed fluxed phase-specific volume can ensure equivalence between the mass conservation equation and the phase indicator (volume conservation) if consistent discretization schemes are chosen for the temporal and convective term. Based on the analysis of discretization errors, we suggest a consistent combination of the temporal discretization scheme and the interpolation scheme for the momentum convection term. We confirm the consistency by solving an auxiliary mass conservation equation with a geometrical calculation of the face-centered density (Liu et al., 2023). We prove the equivalence between these two approaches mathematically and verify and validate their numerical stability for density ratios within [1, <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>] and viscosity ratios within [<span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>].</p></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"281 \",\"pages\":\"Article 106375\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S004579302400207X/pdfft?md5=d79e98a6cf675e23503f97b1bf9e1d18&pid=1-s2.0-S004579302400207X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004579302400207X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004579302400207X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

人们普遍认为,基于几何通量的流体体积(VOF)方法(Marić 等人,2020 年)在处理高密度比的两相流动时是一致的。然而,尽管质量和动量守恒对于无相变的两相不可压缩单场纳维-斯托克斯方程是一致的(Liu 等人,2023 年),但离散化很容易引入不一致,导致非常大的误差或灾难性的失败。我们将针对 ρLENT 非结构化水平集/前沿跟踪方法(Liu 等人,2023 年)得出的一致性条件应用于基于通量的几何 VOF 方法(Marić 等人,2020 年),并将我们的离散化方法应用于 plicRDF-isoAdvector 几何 VOF 方法(Roenby 等人,2016 年)。我们发现,如果为时间项和对流项选择一致的离散化方案,通过缩放几何计算的通量相位特定体积来计算质量通量,可以确保质量守恒方程和相位指标(体积守恒)之间的等价性。根据对离散误差的分析,我们建议将时间离散方案和动量对流项的插值方案进行一致的组合。我们通过求解辅助质量守恒方程和面心密度的几何计算(Liu 等人,2023 年)证实了两者的一致性。我们从数学上证明了这两种方法的等价性,并验证了它们在密度比[1, 106]和粘度比[102, 105]范围内的数值稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios

Geometric flux-based Volume-of-Fluid (VOF) methods (Marić et al., 2020) are widely considered consistent in handling two-phase flows with high density ratios. However, although the conservation of mass and momentum is consistent for two-phase incompressible single-field Navier–Stokes equations without phase-change (Liu et al., 2023), discretization may easily introduce inconsistencies that result in very large errors or catastrophic failure. We apply the consistency conditions derived for the ρLENT unstructured Level Set/Front Tracking method (Liu et al., 2023) to flux-based geometric VOF methods (Marić et al., 2020), and implement our discretization into the plicRDF-isoAdvector geometrical VOF method (Roenby et al., 2016). We find that computing the mass flux by scaling the geometrically computed fluxed phase-specific volume can ensure equivalence between the mass conservation equation and the phase indicator (volume conservation) if consistent discretization schemes are chosen for the temporal and convective term. Based on the analysis of discretization errors, we suggest a consistent combination of the temporal discretization scheme and the interpolation scheme for the momentum convection term. We confirm the consistency by solving an auxiliary mass conservation equation with a geometrical calculation of the face-centered density (Liu et al., 2023). We prove the equivalence between these two approaches mathematically and verify and validate their numerical stability for density ratios within [1, 106] and viscosity ratios within [102, 105].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信