Wilmar Contreras-Sepúlveda , Oscar Danilo Montoya , Walter Gil-González
{"title":"通过半有限编程近似和稳健分析,为 MT-HVDC 电网设计经济-环境能源管理系统","authors":"Wilmar Contreras-Sepúlveda , Oscar Danilo Montoya , Walter Gil-González","doi":"10.1016/j.asej.2024.102968","DOIUrl":null,"url":null,"abstract":"<div><p>This research deals with the economic-environmental dispatch problem (EEDP) in multi-terminal high-voltage direct-current (MT-HVDC) systems by proposing a convex approximation based on semi-definite programming (SDP). The exact formulation of the EEDP corresponds to a non-convex, nonlinear programming problem due to the presence of a nonlinear quadratic constraint regarding the products between voltage variables. The thermal plants' economic and objective functions are modeled using typical quadratic functions. The SDP approach allows reaching a convex approximation that ensures the global optimal solution for each objective function independently or the construction of the optimal Pareto front via the weighting-factor optimization methodology. The proposed SDP approach also considers uncertainties in the demand and in the available power of renewable sources, which makes it robust. The main contribution of this research is a multi-period analysis that includes large-scale renewable generation sources and a robust analysis regarding demand and variations in renewable generation. Numerical results in two MT-HVDC systems demonstrate the effectiveness of the proposed SDP approach when compared to combinatorial optimization algorithms. All numerical simulations were carried out using the CVX convex disciplined tool, with the help of the SEDUMI and SDPT solvers, in the MATLAB programming environment.</p></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"15 9","pages":"Article 102968"},"PeriodicalIF":6.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2090447924003435/pdfft?md5=aab280cbad45b78447e4ece7e61e3d2a&pid=1-s2.0-S2090447924003435-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An economic-environmental energy management system design for MT-HVDC networks via a semi-definite programming approximation with robust analysis\",\"authors\":\"Wilmar Contreras-Sepúlveda , Oscar Danilo Montoya , Walter Gil-González\",\"doi\":\"10.1016/j.asej.2024.102968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research deals with the economic-environmental dispatch problem (EEDP) in multi-terminal high-voltage direct-current (MT-HVDC) systems by proposing a convex approximation based on semi-definite programming (SDP). The exact formulation of the EEDP corresponds to a non-convex, nonlinear programming problem due to the presence of a nonlinear quadratic constraint regarding the products between voltage variables. The thermal plants' economic and objective functions are modeled using typical quadratic functions. The SDP approach allows reaching a convex approximation that ensures the global optimal solution for each objective function independently or the construction of the optimal Pareto front via the weighting-factor optimization methodology. The proposed SDP approach also considers uncertainties in the demand and in the available power of renewable sources, which makes it robust. The main contribution of this research is a multi-period analysis that includes large-scale renewable generation sources and a robust analysis regarding demand and variations in renewable generation. Numerical results in two MT-HVDC systems demonstrate the effectiveness of the proposed SDP approach when compared to combinatorial optimization algorithms. All numerical simulations were carried out using the CVX convex disciplined tool, with the help of the SEDUMI and SDPT solvers, in the MATLAB programming environment.</p></div>\",\"PeriodicalId\":48648,\"journal\":{\"name\":\"Ain Shams Engineering Journal\",\"volume\":\"15 9\",\"pages\":\"Article 102968\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2090447924003435/pdfft?md5=aab280cbad45b78447e4ece7e61e3d2a&pid=1-s2.0-S2090447924003435-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ain Shams Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2090447924003435\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447924003435","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
An economic-environmental energy management system design for MT-HVDC networks via a semi-definite programming approximation with robust analysis
This research deals with the economic-environmental dispatch problem (EEDP) in multi-terminal high-voltage direct-current (MT-HVDC) systems by proposing a convex approximation based on semi-definite programming (SDP). The exact formulation of the EEDP corresponds to a non-convex, nonlinear programming problem due to the presence of a nonlinear quadratic constraint regarding the products between voltage variables. The thermal plants' economic and objective functions are modeled using typical quadratic functions. The SDP approach allows reaching a convex approximation that ensures the global optimal solution for each objective function independently or the construction of the optimal Pareto front via the weighting-factor optimization methodology. The proposed SDP approach also considers uncertainties in the demand and in the available power of renewable sources, which makes it robust. The main contribution of this research is a multi-period analysis that includes large-scale renewable generation sources and a robust analysis regarding demand and variations in renewable generation. Numerical results in two MT-HVDC systems demonstrate the effectiveness of the proposed SDP approach when compared to combinatorial optimization algorithms. All numerical simulations were carried out using the CVX convex disciplined tool, with the help of the SEDUMI and SDPT solvers, in the MATLAB programming environment.
期刊介绍:
in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance.
Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.