引力风下滑动十字坡上的时间大地线

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nicoleta Aldea , Piotr Kopacz
{"title":"引力风下滑动十字坡上的时间大地线","authors":"Nicoleta Aldea ,&nbsp;Piotr Kopacz","doi":"10.1016/j.nonrwa.2024.104177","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we pose and solve the time-optimal navigation problem considered on a slippery mountain slope modeled by a Riemannian manifold of an arbitrary dimension, under the action of a cross gravitational wind. The impact of both lateral and longitudinal components of gravitational wind on the time geodesics is discussed. The varying along-gravity effect depends on traction in the presented model, whereas the cross-gravity additive is taken entirely in the equations of motion, for any direction and gravity force. We obtain the conditions for strong convexity and the purely geometric solution to the problem is given by a new Finsler metric, which belongs to the type of general <span><math><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></math></span>-metrics. The proposed model enables us to create a direct link between the Zermelo navigation problem and the slope-of-a-mountain problem under the action of a cross gravitational wind. Moreover, the behavior of the Finslerian indicatrices and time-minimizing trajectories in relation to the traction coefficient and gravitational wind force are explained and illustrated by a few examples in dimension two. This also compares the corresponding solutions on the slippery slopes under various cross- and along-gravity effects, including the classical Matsumoto’s slope-of-a-mountain problem and Zermelo’s navigation.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time geodesics on a slippery cross slope under gravitational wind\",\"authors\":\"Nicoleta Aldea ,&nbsp;Piotr Kopacz\",\"doi\":\"10.1016/j.nonrwa.2024.104177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we pose and solve the time-optimal navigation problem considered on a slippery mountain slope modeled by a Riemannian manifold of an arbitrary dimension, under the action of a cross gravitational wind. The impact of both lateral and longitudinal components of gravitational wind on the time geodesics is discussed. The varying along-gravity effect depends on traction in the presented model, whereas the cross-gravity additive is taken entirely in the equations of motion, for any direction and gravity force. We obtain the conditions for strong convexity and the purely geometric solution to the problem is given by a new Finsler metric, which belongs to the type of general <span><math><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></math></span>-metrics. The proposed model enables us to create a direct link between the Zermelo navigation problem and the slope-of-a-mountain problem under the action of a cross gravitational wind. Moreover, the behavior of the Finslerian indicatrices and time-minimizing trajectories in relation to the traction coefficient and gravitational wind force are explained and illustrated by a few examples in dimension two. This also compares the corresponding solutions on the slippery slopes under various cross- and along-gravity effects, including the classical Matsumoto’s slope-of-a-mountain problem and Zermelo’s navigation.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001172\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001172","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出并解决了在任意维度的黎曼流形模拟的湿滑山坡上,在横向引力风作用下的时间最优导航问题。讨论了引力风的横向和纵向分量对时间大地线的影响。在所提出的模型中,沿重力效应的变化取决于牵引力,而横向重力加成则完全在运动方程中考虑,适用于任何方向和重力。我们获得了强凸性条件,问题的纯几何解由一个新的芬斯勒度量给出,它属于一般(α,β)度量类型。所提出的模型使我们能够在交叉引力风作用下,在泽梅洛导航问题和山坡问题之间建立直接联系。此外,我们还解释了芬斯勒指标和时间最小化轨迹的行为与牵引系数和引力风力的关系,并通过一些二维的例子进行了说明。此外,还比较了各种交叉和沿重力效应下滑坡的相应解,包括经典的松本山坡问题和泽梅洛导航问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time geodesics on a slippery cross slope under gravitational wind

In this work, we pose and solve the time-optimal navigation problem considered on a slippery mountain slope modeled by a Riemannian manifold of an arbitrary dimension, under the action of a cross gravitational wind. The impact of both lateral and longitudinal components of gravitational wind on the time geodesics is discussed. The varying along-gravity effect depends on traction in the presented model, whereas the cross-gravity additive is taken entirely in the equations of motion, for any direction and gravity force. We obtain the conditions for strong convexity and the purely geometric solution to the problem is given by a new Finsler metric, which belongs to the type of general (α,β)-metrics. The proposed model enables us to create a direct link between the Zermelo navigation problem and the slope-of-a-mountain problem under the action of a cross gravitational wind. Moreover, the behavior of the Finslerian indicatrices and time-minimizing trajectories in relation to the traction coefficient and gravitational wind force are explained and illustrated by a few examples in dimension two. This also compares the corresponding solutions on the slippery slopes under various cross- and along-gravity effects, including the classical Matsumoto’s slope-of-a-mountain problem and Zermelo’s navigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信