{"title":"使用优化的紫外线-C LED 配置进行高接触表面消毒的多变量比较分析","authors":"","doi":"10.1016/j.heha.2024.100101","DOIUrl":null,"url":null,"abstract":"<div><p>UV light-emitting diodes (LEDs) have been regarded as feasible alternatives for traditional UV lamps since the early 2000s, owing to their improved safety features, environmental advantages, and efficiency. Because of the inherent challenges associated with lower intensity of LEDs over extended distances, our findings demonstrated the optimized disinfection efficiency using various LED setups. This study evaluated the antimicrobial effectiveness of single, six, and eight-LED configurations against <em>Staphylococcus aureus</em> (<em>S. aureus</em>), specifically emphasizing attaining the utmost disinfection efficiency within an extended range of up to 60 cm. With an 8-LED configuration, the study achieved a substantial reduction of 6.10×10<sup>4</sup> CFU/mL from an initial level of 5.20×10<sup>9</sup> CFU/mL, corresponding to 4.9-log<sub>10</sub> inactivation, requiring a dose of 264 µJ-cm<sup>−2</sup>. 2.9-log<sub>10</sub> inactivation was achieved using a 6-LED, yielding lower yet comparable efficiency requiring 192 µJ-cm<sup>−2</sup> of dose. However, with 60 µJ-cm<sup>−2</sup> of dose, a single LED could only reduce the bacterial burden from the initial level to merely 0.2-log<sub>10</sub> inactivation, corresponding to 2.9 × 10<sup>9</sup> CFU/mL, under similar exposure settings. In conclusion, UV-LEDs show promise for disinfection, with LED configuration and distance significantly impacting their efficiency, holding perspective for various applications, particularly within healthcare facilities.</p></div>","PeriodicalId":73269,"journal":{"name":"Hygiene and environmental health advances","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277304922400014X/pdfft?md5=4ada6873c8640341da8ccf8af922dfad&pid=1-s2.0-S277304922400014X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Comparative multivariate analysis for high-touch surface disinfection using optimized ultraviolet-C LEDs configuration\",\"authors\":\"\",\"doi\":\"10.1016/j.heha.2024.100101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>UV light-emitting diodes (LEDs) have been regarded as feasible alternatives for traditional UV lamps since the early 2000s, owing to their improved safety features, environmental advantages, and efficiency. Because of the inherent challenges associated with lower intensity of LEDs over extended distances, our findings demonstrated the optimized disinfection efficiency using various LED setups. This study evaluated the antimicrobial effectiveness of single, six, and eight-LED configurations against <em>Staphylococcus aureus</em> (<em>S. aureus</em>), specifically emphasizing attaining the utmost disinfection efficiency within an extended range of up to 60 cm. With an 8-LED configuration, the study achieved a substantial reduction of 6.10×10<sup>4</sup> CFU/mL from an initial level of 5.20×10<sup>9</sup> CFU/mL, corresponding to 4.9-log<sub>10</sub> inactivation, requiring a dose of 264 µJ-cm<sup>−2</sup>. 2.9-log<sub>10</sub> inactivation was achieved using a 6-LED, yielding lower yet comparable efficiency requiring 192 µJ-cm<sup>−2</sup> of dose. However, with 60 µJ-cm<sup>−2</sup> of dose, a single LED could only reduce the bacterial burden from the initial level to merely 0.2-log<sub>10</sub> inactivation, corresponding to 2.9 × 10<sup>9</sup> CFU/mL, under similar exposure settings. In conclusion, UV-LEDs show promise for disinfection, with LED configuration and distance significantly impacting their efficiency, holding perspective for various applications, particularly within healthcare facilities.</p></div>\",\"PeriodicalId\":73269,\"journal\":{\"name\":\"Hygiene and environmental health advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S277304922400014X/pdfft?md5=4ada6873c8640341da8ccf8af922dfad&pid=1-s2.0-S277304922400014X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hygiene and environmental health advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277304922400014X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hygiene and environmental health advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277304922400014X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
自 21 世纪初以来,紫外线发光二极管(LED)因其更好的安全性能、环境优势和效率,一直被视为传统紫外线灯的可行替代品。由于 LED 在较远距离上的强度较低,因此存在固有的挑战,我们的研究结果表明,使用不同的 LED 设置可以优化消毒效率。这项研究评估了单、六和八 LED 配置对金黄色葡萄球菌(S. aureus)的抗菌效果,特别强调要在长达 60 厘米的范围内达到最高消毒效率。使用 8 LED 配置时,研究结果表明,与最初的 5.20×109 CFU/mL 水平相比,CFU/mL 大幅减少了 6.10×104,相当于灭活了 4.9-log10,所需的剂量为 264 µJ-cm-2。使用 6 个 LED 可达到 2.9 对数 10 的灭活,效率较低,但与之相当,需要 192 µJ-cm-2 的剂量。然而,在类似的曝光设置下,使用 60 µJ-cm-2 的剂量时,单个 LED 只能将细菌负荷从初始水平降低到 0.2-log10 的灭活水平,相当于 2.9 × 109 CFU/mL。总之,紫外线-LED 在消毒方面大有可为,LED 的配置和距离对其效率有显著影响,具有各种应用前景,尤其是在医疗设施内。
Comparative multivariate analysis for high-touch surface disinfection using optimized ultraviolet-C LEDs configuration
UV light-emitting diodes (LEDs) have been regarded as feasible alternatives for traditional UV lamps since the early 2000s, owing to their improved safety features, environmental advantages, and efficiency. Because of the inherent challenges associated with lower intensity of LEDs over extended distances, our findings demonstrated the optimized disinfection efficiency using various LED setups. This study evaluated the antimicrobial effectiveness of single, six, and eight-LED configurations against Staphylococcus aureus (S. aureus), specifically emphasizing attaining the utmost disinfection efficiency within an extended range of up to 60 cm. With an 8-LED configuration, the study achieved a substantial reduction of 6.10×104 CFU/mL from an initial level of 5.20×109 CFU/mL, corresponding to 4.9-log10 inactivation, requiring a dose of 264 µJ-cm−2. 2.9-log10 inactivation was achieved using a 6-LED, yielding lower yet comparable efficiency requiring 192 µJ-cm−2 of dose. However, with 60 µJ-cm−2 of dose, a single LED could only reduce the bacterial burden from the initial level to merely 0.2-log10 inactivation, corresponding to 2.9 × 109 CFU/mL, under similar exposure settings. In conclusion, UV-LEDs show promise for disinfection, with LED configuration and distance significantly impacting their efficiency, holding perspective for various applications, particularly within healthcare facilities.