Amira Hamdy Ali Ahmed , Wu Jin , Mosaad Ali Hussein Ali
{"title":"利用梯度提升模型预测再生混凝土的抗压强度","authors":"Amira Hamdy Ali Ahmed , Wu Jin , Mosaad Ali Hussein Ali","doi":"10.1016/j.asej.2024.102975","DOIUrl":null,"url":null,"abstract":"<div><p>The construction industry is shifting towards sustainability, emphasizing the need for innovative materials. Recycled Aggregate Concrete (RAC), utilizing recycled aggregates, emerges as a promising eco-friendly solution to minimize waste and resource utilization. However, accurately predicting its compressive strength (CS) is challenging due to varying composition and properties. This study addresses this issue by employing machine learning models, specifically five gradient boosting algorithms: Gradient Boosting Machine (GBM), LightGBM, XGBoost, Categorical Gradient Boost (CGB), and HistGradientBoosting (HGB). A total of 314 mixes from relevant published literature were aggregated to train the models. These models are meticulously fine-tuned through hyperparameter optimization for optimal predictive performance. The study also introduces SHAP (SHapley Additive exPlanations) algorithms for model interpretability, elucidating feature contributions to predictions. The results revealed that among the five gradient boosting models, CGB demonstrated the highest R2 value of 92% on the testing set, while LightGBM exhibited the lowest Coefficient of Determination (R2) value of 88%. Additionally, CGB achieved the lowest Root Mean Square Error (RMSE) of approximately 4.05, whereas XGBoost showed the highest RMSE of around 4.8. Furthermore, for Mean Absolute Error (MAE), LightGBM recorded the lowest value of approximately 3.16, while HGB yielded the highest MAE of about 3.8. The SHAP analyses reveal influential features impacting RAC strength, highlighting the significance of cement, water, sand, and recycled aggregate water absorption in predicting RAC compressive strength.</p></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"15 9","pages":"Article 102975"},"PeriodicalIF":6.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2090447924003502/pdfft?md5=896e649ced247c47e0f5b708d9405e8f&pid=1-s2.0-S2090447924003502-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Prediction of compressive strength of recycled concrete using gradient boosting models\",\"authors\":\"Amira Hamdy Ali Ahmed , Wu Jin , Mosaad Ali Hussein Ali\",\"doi\":\"10.1016/j.asej.2024.102975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The construction industry is shifting towards sustainability, emphasizing the need for innovative materials. Recycled Aggregate Concrete (RAC), utilizing recycled aggregates, emerges as a promising eco-friendly solution to minimize waste and resource utilization. However, accurately predicting its compressive strength (CS) is challenging due to varying composition and properties. This study addresses this issue by employing machine learning models, specifically five gradient boosting algorithms: Gradient Boosting Machine (GBM), LightGBM, XGBoost, Categorical Gradient Boost (CGB), and HistGradientBoosting (HGB). A total of 314 mixes from relevant published literature were aggregated to train the models. These models are meticulously fine-tuned through hyperparameter optimization for optimal predictive performance. The study also introduces SHAP (SHapley Additive exPlanations) algorithms for model interpretability, elucidating feature contributions to predictions. The results revealed that among the five gradient boosting models, CGB demonstrated the highest R2 value of 92% on the testing set, while LightGBM exhibited the lowest Coefficient of Determination (R2) value of 88%. Additionally, CGB achieved the lowest Root Mean Square Error (RMSE) of approximately 4.05, whereas XGBoost showed the highest RMSE of around 4.8. Furthermore, for Mean Absolute Error (MAE), LightGBM recorded the lowest value of approximately 3.16, while HGB yielded the highest MAE of about 3.8. The SHAP analyses reveal influential features impacting RAC strength, highlighting the significance of cement, water, sand, and recycled aggregate water absorption in predicting RAC compressive strength.</p></div>\",\"PeriodicalId\":48648,\"journal\":{\"name\":\"Ain Shams Engineering Journal\",\"volume\":\"15 9\",\"pages\":\"Article 102975\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2090447924003502/pdfft?md5=896e649ced247c47e0f5b708d9405e8f&pid=1-s2.0-S2090447924003502-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ain Shams Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2090447924003502\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447924003502","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Prediction of compressive strength of recycled concrete using gradient boosting models
The construction industry is shifting towards sustainability, emphasizing the need for innovative materials. Recycled Aggregate Concrete (RAC), utilizing recycled aggregates, emerges as a promising eco-friendly solution to minimize waste and resource utilization. However, accurately predicting its compressive strength (CS) is challenging due to varying composition and properties. This study addresses this issue by employing machine learning models, specifically five gradient boosting algorithms: Gradient Boosting Machine (GBM), LightGBM, XGBoost, Categorical Gradient Boost (CGB), and HistGradientBoosting (HGB). A total of 314 mixes from relevant published literature were aggregated to train the models. These models are meticulously fine-tuned through hyperparameter optimization for optimal predictive performance. The study also introduces SHAP (SHapley Additive exPlanations) algorithms for model interpretability, elucidating feature contributions to predictions. The results revealed that among the five gradient boosting models, CGB demonstrated the highest R2 value of 92% on the testing set, while LightGBM exhibited the lowest Coefficient of Determination (R2) value of 88%. Additionally, CGB achieved the lowest Root Mean Square Error (RMSE) of approximately 4.05, whereas XGBoost showed the highest RMSE of around 4.8. Furthermore, for Mean Absolute Error (MAE), LightGBM recorded the lowest value of approximately 3.16, while HGB yielded the highest MAE of about 3.8. The SHAP analyses reveal influential features impacting RAC strength, highlighting the significance of cement, water, sand, and recycled aggregate water absorption in predicting RAC compressive strength.
期刊介绍:
in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance.
Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.