{"title":"水平地下流动人工湿地中的微塑料:德尼兹利/土耳其案例研究","authors":"Neriman Baylan, Pelin Koyuncuoğlu, Gülbin Erden","doi":"10.1016/j.ecoleng.2024.107349","DOIUrl":null,"url":null,"abstract":"<div><p>Domestic wastewater plays a critical role in the discharge of microplastics into aquatic ecosystems. Constructed wetland systems are used to treat domestic wastewater in rural areas. This study aimed to determine the microplastic concentrations and morphological properties (shape, size, and color) of microplastics in influent, effluent, and sediment samples taken from horizontal subsurface flow constructed wetland system in Denizli/Türkiye. Also, the microplastic removal efficiency was evaluated in the constructed wetland. Samples were collected during summer and winter to investigate the seasonal variations in microplastic concentrations. The findings revealed that the majority of microplastics collected in this study were fibers (winter: 67.78%, summer: 82.46%) and transparent-white colored microplastics in both periods (winter: 88%, summer: 72%). In addition, the most abundant microplastic size was obtained as 100–500 μm (winter: 92%, summer: 82%). Suspected microplastics were identified by ATR-FTIR as PES, PET, and PEVA. PEVA is the most frequently encountered type of polymer. The average removal efficiency of microplastics in summer was determined as 87.43% and in winter was 97.27%. Daily microplastic discharge from the constructed wetland was calculated as 1.365 × 10<sup>7</sup> MP/day for the summer season, and 2.918 × 10<sup>7</sup> MP/day for the winter season. The findings obtained in this study suggest that although the constructed wetland system adequately removes microplastics, there is a high release of microplastics in the effluent. All the data suggest that constructed wetlands are a crucial source of the release of microplastics.</p></div>","PeriodicalId":11490,"journal":{"name":"Ecological Engineering","volume":"207 ","pages":"Article 107349"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microplastics in a horizontal subsurface flow constructed wetland: A Case Study of Denizli/Türkiye\",\"authors\":\"Neriman Baylan, Pelin Koyuncuoğlu, Gülbin Erden\",\"doi\":\"10.1016/j.ecoleng.2024.107349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Domestic wastewater plays a critical role in the discharge of microplastics into aquatic ecosystems. Constructed wetland systems are used to treat domestic wastewater in rural areas. This study aimed to determine the microplastic concentrations and morphological properties (shape, size, and color) of microplastics in influent, effluent, and sediment samples taken from horizontal subsurface flow constructed wetland system in Denizli/Türkiye. Also, the microplastic removal efficiency was evaluated in the constructed wetland. Samples were collected during summer and winter to investigate the seasonal variations in microplastic concentrations. The findings revealed that the majority of microplastics collected in this study were fibers (winter: 67.78%, summer: 82.46%) and transparent-white colored microplastics in both periods (winter: 88%, summer: 72%). In addition, the most abundant microplastic size was obtained as 100–500 μm (winter: 92%, summer: 82%). Suspected microplastics were identified by ATR-FTIR as PES, PET, and PEVA. PEVA is the most frequently encountered type of polymer. The average removal efficiency of microplastics in summer was determined as 87.43% and in winter was 97.27%. Daily microplastic discharge from the constructed wetland was calculated as 1.365 × 10<sup>7</sup> MP/day for the summer season, and 2.918 × 10<sup>7</sup> MP/day for the winter season. The findings obtained in this study suggest that although the constructed wetland system adequately removes microplastics, there is a high release of microplastics in the effluent. All the data suggest that constructed wetlands are a crucial source of the release of microplastics.</p></div>\",\"PeriodicalId\":11490,\"journal\":{\"name\":\"Ecological Engineering\",\"volume\":\"207 \",\"pages\":\"Article 107349\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925857424001745\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925857424001745","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Microplastics in a horizontal subsurface flow constructed wetland: A Case Study of Denizli/Türkiye
Domestic wastewater plays a critical role in the discharge of microplastics into aquatic ecosystems. Constructed wetland systems are used to treat domestic wastewater in rural areas. This study aimed to determine the microplastic concentrations and morphological properties (shape, size, and color) of microplastics in influent, effluent, and sediment samples taken from horizontal subsurface flow constructed wetland system in Denizli/Türkiye. Also, the microplastic removal efficiency was evaluated in the constructed wetland. Samples were collected during summer and winter to investigate the seasonal variations in microplastic concentrations. The findings revealed that the majority of microplastics collected in this study were fibers (winter: 67.78%, summer: 82.46%) and transparent-white colored microplastics in both periods (winter: 88%, summer: 72%). In addition, the most abundant microplastic size was obtained as 100–500 μm (winter: 92%, summer: 82%). Suspected microplastics were identified by ATR-FTIR as PES, PET, and PEVA. PEVA is the most frequently encountered type of polymer. The average removal efficiency of microplastics in summer was determined as 87.43% and in winter was 97.27%. Daily microplastic discharge from the constructed wetland was calculated as 1.365 × 107 MP/day for the summer season, and 2.918 × 107 MP/day for the winter season. The findings obtained in this study suggest that although the constructed wetland system adequately removes microplastics, there is a high release of microplastics in the effluent. All the data suggest that constructed wetlands are a crucial source of the release of microplastics.
期刊介绍:
Ecological engineering has been defined as the design of ecosystems for the mutual benefit of humans and nature. The journal is meant for ecologists who, because of their research interests or occupation, are involved in designing, monitoring, or restoring ecosystems, and can serve as a bridge between ecologists and engineers.
Specific topics covered in the journal include: habitat reconstruction; ecotechnology; synthetic ecology; bioengineering; restoration ecology; ecology conservation; ecosystem rehabilitation; stream and river restoration; reclamation ecology; non-renewable resource conservation. Descriptions of specific applications of ecological engineering are acceptable only when situated within context of adding novelty to current research and emphasizing ecosystem restoration. We do not accept purely descriptive reports on ecosystem structures (such as vegetation surveys), purely physical assessment of materials that can be used for ecological restoration, small-model studies carried out in the laboratory or greenhouse with artificial (waste)water or crop studies, or case studies on conventional wastewater treatment and eutrophication that do not offer an ecosystem restoration approach within the paper.