水平地下流动人工湿地中的微塑料:德尼兹利/土耳其案例研究

IF 3.9 2区 环境科学与生态学 Q1 ECOLOGY
Neriman Baylan, Pelin Koyuncuoğlu, Gülbin Erden
{"title":"水平地下流动人工湿地中的微塑料:德尼兹利/土耳其案例研究","authors":"Neriman Baylan,&nbsp;Pelin Koyuncuoğlu,&nbsp;Gülbin Erden","doi":"10.1016/j.ecoleng.2024.107349","DOIUrl":null,"url":null,"abstract":"<div><p>Domestic wastewater plays a critical role in the discharge of microplastics into aquatic ecosystems. Constructed wetland systems are used to treat domestic wastewater in rural areas. This study aimed to determine the microplastic concentrations and morphological properties (shape, size, and color) of microplastics in influent, effluent, and sediment samples taken from horizontal subsurface flow constructed wetland system in Denizli/Türkiye. Also, the microplastic removal efficiency was evaluated in the constructed wetland. Samples were collected during summer and winter to investigate the seasonal variations in microplastic concentrations. The findings revealed that the majority of microplastics collected in this study were fibers (winter: 67.78%, summer: 82.46%) and transparent-white colored microplastics in both periods (winter: 88%, summer: 72%). In addition, the most abundant microplastic size was obtained as 100–500 μm (winter: 92%, summer: 82%). Suspected microplastics were identified by ATR-FTIR as PES, PET, and PEVA. PEVA is the most frequently encountered type of polymer. The average removal efficiency of microplastics in summer was determined as 87.43% and in winter was 97.27%. Daily microplastic discharge from the constructed wetland was calculated as 1.365 × 10<sup>7</sup> MP/day for the summer season, and 2.918 × 10<sup>7</sup> MP/day for the winter season. The findings obtained in this study suggest that although the constructed wetland system adequately removes microplastics, there is a high release of microplastics in the effluent. All the data suggest that constructed wetlands are a crucial source of the release of microplastics.</p></div>","PeriodicalId":11490,"journal":{"name":"Ecological Engineering","volume":"207 ","pages":"Article 107349"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microplastics in a horizontal subsurface flow constructed wetland: A Case Study of Denizli/Türkiye\",\"authors\":\"Neriman Baylan,&nbsp;Pelin Koyuncuoğlu,&nbsp;Gülbin Erden\",\"doi\":\"10.1016/j.ecoleng.2024.107349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Domestic wastewater plays a critical role in the discharge of microplastics into aquatic ecosystems. Constructed wetland systems are used to treat domestic wastewater in rural areas. This study aimed to determine the microplastic concentrations and morphological properties (shape, size, and color) of microplastics in influent, effluent, and sediment samples taken from horizontal subsurface flow constructed wetland system in Denizli/Türkiye. Also, the microplastic removal efficiency was evaluated in the constructed wetland. Samples were collected during summer and winter to investigate the seasonal variations in microplastic concentrations. The findings revealed that the majority of microplastics collected in this study were fibers (winter: 67.78%, summer: 82.46%) and transparent-white colored microplastics in both periods (winter: 88%, summer: 72%). In addition, the most abundant microplastic size was obtained as 100–500 μm (winter: 92%, summer: 82%). Suspected microplastics were identified by ATR-FTIR as PES, PET, and PEVA. PEVA is the most frequently encountered type of polymer. The average removal efficiency of microplastics in summer was determined as 87.43% and in winter was 97.27%. Daily microplastic discharge from the constructed wetland was calculated as 1.365 × 10<sup>7</sup> MP/day for the summer season, and 2.918 × 10<sup>7</sup> MP/day for the winter season. The findings obtained in this study suggest that although the constructed wetland system adequately removes microplastics, there is a high release of microplastics in the effluent. All the data suggest that constructed wetlands are a crucial source of the release of microplastics.</p></div>\",\"PeriodicalId\":11490,\"journal\":{\"name\":\"Ecological Engineering\",\"volume\":\"207 \",\"pages\":\"Article 107349\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925857424001745\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925857424001745","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生活废水在向水生生态系统排放微塑料方面起着至关重要的作用。农村地区使用人工湿地系统处理生活废水。本研究旨在确定从土耳其代尼兹利的水平面下流构筑湿地系统中采集的进水、出水和沉积物样本中微塑料的浓度和形态特性(形状、大小和颜色)。此外,还对构建湿地的微塑料去除效率进行了评估。样本在夏季和冬季采集,以研究微塑料浓度的季节性变化。研究结果表明,在本研究中收集到的大部分微塑料都是纤维(冬季:67.78%,夏季:82.46%)和透明白色微塑料(冬季:88%,夏季:72%)。此外,最常见的微塑料尺寸为 100-500 μm(冬季:92%,夏季:82%)。经 ATR-FTIR 鉴定,疑似微塑料包括 PES、PET 和 PEVA。PEVA 是最常见的聚合物类型。经测定,夏季对微塑料的平均去除率为 87.43%,冬季为 97.27%。经计算,夏季建造的湿地每天的微塑料排放量为 1.365 × 107 MP/天,冬季为 2.918 × 107 MP/天。本研究的结果表明,尽管建造的湿地系统能够充分去除微塑料,但污水中仍有大量微塑料释放出来。所有数据都表明,人工湿地是微塑料释放的一个重要来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microplastics in a horizontal subsurface flow constructed wetland: A Case Study of Denizli/Türkiye

Domestic wastewater plays a critical role in the discharge of microplastics into aquatic ecosystems. Constructed wetland systems are used to treat domestic wastewater in rural areas. This study aimed to determine the microplastic concentrations and morphological properties (shape, size, and color) of microplastics in influent, effluent, and sediment samples taken from horizontal subsurface flow constructed wetland system in Denizli/Türkiye. Also, the microplastic removal efficiency was evaluated in the constructed wetland. Samples were collected during summer and winter to investigate the seasonal variations in microplastic concentrations. The findings revealed that the majority of microplastics collected in this study were fibers (winter: 67.78%, summer: 82.46%) and transparent-white colored microplastics in both periods (winter: 88%, summer: 72%). In addition, the most abundant microplastic size was obtained as 100–500 μm (winter: 92%, summer: 82%). Suspected microplastics were identified by ATR-FTIR as PES, PET, and PEVA. PEVA is the most frequently encountered type of polymer. The average removal efficiency of microplastics in summer was determined as 87.43% and in winter was 97.27%. Daily microplastic discharge from the constructed wetland was calculated as 1.365 × 107 MP/day for the summer season, and 2.918 × 107 MP/day for the winter season. The findings obtained in this study suggest that although the constructed wetland system adequately removes microplastics, there is a high release of microplastics in the effluent. All the data suggest that constructed wetlands are a crucial source of the release of microplastics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Engineering
Ecological Engineering 环境科学-工程:环境
CiteScore
8.00
自引率
5.30%
发文量
293
审稿时长
57 days
期刊介绍: Ecological engineering has been defined as the design of ecosystems for the mutual benefit of humans and nature. The journal is meant for ecologists who, because of their research interests or occupation, are involved in designing, monitoring, or restoring ecosystems, and can serve as a bridge between ecologists and engineers. Specific topics covered in the journal include: habitat reconstruction; ecotechnology; synthetic ecology; bioengineering; restoration ecology; ecology conservation; ecosystem rehabilitation; stream and river restoration; reclamation ecology; non-renewable resource conservation. Descriptions of specific applications of ecological engineering are acceptable only when situated within context of adding novelty to current research and emphasizing ecosystem restoration. We do not accept purely descriptive reports on ecosystem structures (such as vegetation surveys), purely physical assessment of materials that can be used for ecological restoration, small-model studies carried out in the laboratory or greenhouse with artificial (waste)water or crop studies, or case studies on conventional wastewater treatment and eutrophication that do not offer an ecosystem restoration approach within the paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信