矿物勘探多源地球科学数据集的融合与综合解释

IF 2.2 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
{"title":"矿物勘探多源地球科学数据集的融合与综合解释","authors":"","doi":"10.1016/j.jappgeo.2024.105445","DOIUrl":null,"url":null,"abstract":"<div><p>Integrated interpretation has been a cutting-edge approach in three-dimensional (3D) mineral potential mapping (MPM) in recent decades. This research presented a multisource geo-data fusion and integrated interpretation approach for 3D MPM. Thereinto, the favorable geological bodies and faults were scored according to their closeness of the relationship with mineralization. The soil geochemical data and Landsat 8 OLI imagery was processed by orthogonal factor analysis (FA) to explore the mineralization-related geochemical factors and to extract hydrothermal alterations, respectively. The aeromagnetic data was denoised by multifractal singular value decomposition (MSVD) and was extracted of the residual anomalies by bi-dimensional empirical mode decomposition (BEMD). In this way, these multisource geo-anomalies were fused by TOPSIS algorithm and the fusion result was segmented by concentration-area (C-A) multifractal model for targets mapping. Then a wavenumber-domain fast 3D-inversion approach of MagFInv3D was applied in inverting the residual magnetic anomalies. At last, the targets, occurrences and regional faults along the inverted underground residual anomalies were integrated together for interpretation. It proved that the proposed approach could show high performance in 3D MPM, which could provide a reference for 3D mineral exploration, especially in a tectonically-controlled and polymetallic metallogenic belt.</p></div>","PeriodicalId":54882,"journal":{"name":"Journal of Applied Geophysics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fusion and integrated interpretation of multisource geoscience datasets for mineral exploration\",\"authors\":\"\",\"doi\":\"10.1016/j.jappgeo.2024.105445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Integrated interpretation has been a cutting-edge approach in three-dimensional (3D) mineral potential mapping (MPM) in recent decades. This research presented a multisource geo-data fusion and integrated interpretation approach for 3D MPM. Thereinto, the favorable geological bodies and faults were scored according to their closeness of the relationship with mineralization. The soil geochemical data and Landsat 8 OLI imagery was processed by orthogonal factor analysis (FA) to explore the mineralization-related geochemical factors and to extract hydrothermal alterations, respectively. The aeromagnetic data was denoised by multifractal singular value decomposition (MSVD) and was extracted of the residual anomalies by bi-dimensional empirical mode decomposition (BEMD). In this way, these multisource geo-anomalies were fused by TOPSIS algorithm and the fusion result was segmented by concentration-area (C-A) multifractal model for targets mapping. Then a wavenumber-domain fast 3D-inversion approach of MagFInv3D was applied in inverting the residual magnetic anomalies. At last, the targets, occurrences and regional faults along the inverted underground residual anomalies were integrated together for interpretation. It proved that the proposed approach could show high performance in 3D MPM, which could provide a reference for 3D mineral exploration, especially in a tectonically-controlled and polymetallic metallogenic belt.</p></div>\",\"PeriodicalId\":54882,\"journal\":{\"name\":\"Journal of Applied Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926985124001617\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926985124001617","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近几十年来,综合解释一直是三维(3D)矿产潜力测绘(MPM)的前沿方法。本研究提出了一种多源地质数据融合和三维矿产潜力测绘综合解释方法。其中,根据有利地质体和断层与成矿关系的密切程度对其进行了评分。土壤地球化学数据和 Landsat 8 OLI 图像经正交因子分析(FA)处理后,分别用于探索与成矿相关的地球化学因素和提取热液蚀变因素。通过多分形奇异值分解(MSVD)对气磁数据进行去噪处理,并通过双维经验模式分解(BEMD)提取残余异常。这样,这些多源地质异常就通过 TOPSIS 算法进行了融合,融合结果通过浓度-区域(C-A)多分形模型进行分割,以绘制目标图。然后采用 MagFInv3D 的波数域快速三维反演方法反演残余磁异常。最后,将反演的地下残余异常沿线的目标、矿点和区域断层整合在一起进行解释。结果表明,所提出的方法在三维多金属矿勘探中表现出较高的性能,可为三维矿产勘探提供参考,尤其是在受构造控制的多金属成矿带中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fusion and integrated interpretation of multisource geoscience datasets for mineral exploration

Integrated interpretation has been a cutting-edge approach in three-dimensional (3D) mineral potential mapping (MPM) in recent decades. This research presented a multisource geo-data fusion and integrated interpretation approach for 3D MPM. Thereinto, the favorable geological bodies and faults were scored according to their closeness of the relationship with mineralization. The soil geochemical data and Landsat 8 OLI imagery was processed by orthogonal factor analysis (FA) to explore the mineralization-related geochemical factors and to extract hydrothermal alterations, respectively. The aeromagnetic data was denoised by multifractal singular value decomposition (MSVD) and was extracted of the residual anomalies by bi-dimensional empirical mode decomposition (BEMD). In this way, these multisource geo-anomalies were fused by TOPSIS algorithm and the fusion result was segmented by concentration-area (C-A) multifractal model for targets mapping. Then a wavenumber-domain fast 3D-inversion approach of MagFInv3D was applied in inverting the residual magnetic anomalies. At last, the targets, occurrences and regional faults along the inverted underground residual anomalies were integrated together for interpretation. It proved that the proposed approach could show high performance in 3D MPM, which could provide a reference for 3D mineral exploration, especially in a tectonically-controlled and polymetallic metallogenic belt.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Geophysics
Journal of Applied Geophysics 地学-地球科学综合
CiteScore
3.60
自引率
10.00%
发文量
274
审稿时长
4 months
期刊介绍: The Journal of Applied Geophysics with its key objective of responding to pertinent and timely needs, places particular emphasis on methodological developments and innovative applications of geophysical techniques for addressing environmental, engineering, and hydrological problems. Related topical research in exploration geophysics and in soil and rock physics is also covered by the Journal of Applied Geophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信