{"title":"在接触状态测量中抑制超声波反射系数的边缘模糊","authors":"Xingyuan Wang , Chonglin Xu , Fulai Yang","doi":"10.1016/j.ndteint.2024.103201","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrasonic reflection coefficient is the key to contact state evaluation of mechanical devices. Edge blurring can lead to contact state (such as stress concentrations) measurement errors. This reduces the reliability of performance evaluations and introduces potential security risks. In this study, an edge blurring suppression method based on matching pursuit algorithm was proposed. Firstly, the interference signal prediction model is built based on the Nakagami model. Then, a blurred signal separation algorithm based on matching pursuit is proposed to obtain the effective signal. Finally, the reflection coefficient with and without edge blurring effect were obtained. The simulation results show that the maximum relative error of the reflection coefficient is reduced from 219 % to 15 %. The effectiveness of the proposed method is also verified by experiments. The experimental results show that the relative error of the reflection coefficient after edge blurring suppression is reduced from 64 % to 16 %. This indicates that the proposed method can effectively suppress edge blurring, which provides an effective method for edge blurring suppression in various application fields of ultrasonic measurement and improve the reliability of product quality evaluation.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"147 ","pages":"Article 103201"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge blurring suppression of ultrasonic reflection coefficients in contact state measurement\",\"authors\":\"Xingyuan Wang , Chonglin Xu , Fulai Yang\",\"doi\":\"10.1016/j.ndteint.2024.103201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ultrasonic reflection coefficient is the key to contact state evaluation of mechanical devices. Edge blurring can lead to contact state (such as stress concentrations) measurement errors. This reduces the reliability of performance evaluations and introduces potential security risks. In this study, an edge blurring suppression method based on matching pursuit algorithm was proposed. Firstly, the interference signal prediction model is built based on the Nakagami model. Then, a blurred signal separation algorithm based on matching pursuit is proposed to obtain the effective signal. Finally, the reflection coefficient with and without edge blurring effect were obtained. The simulation results show that the maximum relative error of the reflection coefficient is reduced from 219 % to 15 %. The effectiveness of the proposed method is also verified by experiments. The experimental results show that the relative error of the reflection coefficient after edge blurring suppression is reduced from 64 % to 16 %. This indicates that the proposed method can effectively suppress edge blurring, which provides an effective method for edge blurring suppression in various application fields of ultrasonic measurement and improve the reliability of product quality evaluation.</p></div>\",\"PeriodicalId\":18868,\"journal\":{\"name\":\"Ndt & E International\",\"volume\":\"147 \",\"pages\":\"Article 103201\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ndt & E International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096386952400166X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096386952400166X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Edge blurring suppression of ultrasonic reflection coefficients in contact state measurement
Ultrasonic reflection coefficient is the key to contact state evaluation of mechanical devices. Edge blurring can lead to contact state (such as stress concentrations) measurement errors. This reduces the reliability of performance evaluations and introduces potential security risks. In this study, an edge blurring suppression method based on matching pursuit algorithm was proposed. Firstly, the interference signal prediction model is built based on the Nakagami model. Then, a blurred signal separation algorithm based on matching pursuit is proposed to obtain the effective signal. Finally, the reflection coefficient with and without edge blurring effect were obtained. The simulation results show that the maximum relative error of the reflection coefficient is reduced from 219 % to 15 %. The effectiveness of the proposed method is also verified by experiments. The experimental results show that the relative error of the reflection coefficient after edge blurring suppression is reduced from 64 % to 16 %. This indicates that the proposed method can effectively suppress edge blurring, which provides an effective method for edge blurring suppression in various application fields of ultrasonic measurement and improve the reliability of product quality evaluation.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.