{"title":"紧凑流形上乘法算子的收敛性","authors":"Xianghong Chen , Dashan Fan , Ziyao Liu","doi":"10.1016/j.na.2024.113632","DOIUrl":null,"url":null,"abstract":"<div><p>We study a family of multiplier operators <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>γ</mi></mrow></msub><mfenced><mrow><mi>t</mi><mi>⋅</mi></mrow></mfenced></mrow></msub><mfenced><mrow><mi>f</mi></mrow></mfenced></mrow></math></span> on compact manifolds <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, which is an analogue of the spherical average <span><math><mrow><msubsup><mrow><mi>S</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mfenced><mrow><mi>f</mi></mrow></mfenced></mrow></math></span> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We establish the almost everywhere convergence of <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>γ</mi></mrow></msub><mfenced><mrow><mi>t</mi><mi>⋅</mi></mrow></mfenced></mrow></msub><mfenced><mrow><mi>f</mi></mrow></mfenced></mrow></math></span> as <span><math><mrow><mi>t</mi><mo>→</mo><mn>0</mn></mrow></math></span>. The result is an extension of a Stein’s theorem on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Let <span><math><msubsup><mrow><mover><mrow><mi>S</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup></math></span> be an analogue of <span><math><mrow><msubsup><mrow><mi>S</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mspace></mspace></mrow></math></span>on the <span><math><mrow><mi>n</mi><mo>−</mo></mrow></math></span>torus <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. As a consequence, we obtain that <span><math><mrow><msub><mrow><mo>lim</mo></mrow><mrow><mi>t</mi><mo>→</mo><mn>0</mn></mrow></msub><msubsup><mrow><mover><mrow><mi>S</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> almost everywhere if <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>+</mo><mi>γ</mi></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>(</mo><mi>L</mi><mi>o</mi><msup><mrow><mi>g</mi></mrow><mrow><mo>+</mo></mrow></msup><mi>L</mi><mo>)</mo></mrow></mrow><mrow><mi>θ</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>θ</mi><mo>></mo><mfrac><mrow><mn>1</mn><mo>−</mo><mi>γ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>+</mo><mi>γ</mi></mrow></mfrac></mrow></math></span>, <span><math><mrow><mo>−</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo><</mo><mi>γ</mi><mo><</mo><mn>1</mn></mrow></math></span> and that there exits an <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>+</mo><mi>γ</mi></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>(</mo><mi>L</mi><mi>o</mi><msup><mrow><mi>g</mi></mrow><mrow><mo>+</mo></mrow></msup><mi>L</mi><mo>)</mo></mrow></mrow><mrow><mi>θ</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>θ</mi><mo><</mo><mfrac><mrow><mn>1</mn><mo>−</mo><mi>γ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>+</mo><mi>γ</mi></mrow></mfrac></mrow></math></span>, <span><math><mrow><mn>0</mn><mo><</mo><mi>γ</mi><mo><</mo><mn>1</mn></mrow></math></span> such that <span><math><mrow><mo>lim</mo><msub><mrow><mo>sup</mo></mrow><mrow><mi>t</mi><mo>→</mo><mn>0</mn></mrow></msub><mfenced><mrow><msubsup><mrow><mover><mrow><mi>S</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfenced><mo>=</mo><mi>∞</mi></mrow></math></span> almost everywhere.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence of Multiplier Operators on Compact Manifolds\",\"authors\":\"Xianghong Chen , Dashan Fan , Ziyao Liu\",\"doi\":\"10.1016/j.na.2024.113632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study a family of multiplier operators <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>γ</mi></mrow></msub><mfenced><mrow><mi>t</mi><mi>⋅</mi></mrow></mfenced></mrow></msub><mfenced><mrow><mi>f</mi></mrow></mfenced></mrow></math></span> on compact manifolds <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, which is an analogue of the spherical average <span><math><mrow><msubsup><mrow><mi>S</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mfenced><mrow><mi>f</mi></mrow></mfenced></mrow></math></span> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We establish the almost everywhere convergence of <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>γ</mi></mrow></msub><mfenced><mrow><mi>t</mi><mi>⋅</mi></mrow></mfenced></mrow></msub><mfenced><mrow><mi>f</mi></mrow></mfenced></mrow></math></span> as <span><math><mrow><mi>t</mi><mo>→</mo><mn>0</mn></mrow></math></span>. The result is an extension of a Stein’s theorem on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Let <span><math><msubsup><mrow><mover><mrow><mi>S</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup></math></span> be an analogue of <span><math><mrow><msubsup><mrow><mi>S</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mspace></mspace></mrow></math></span>on the <span><math><mrow><mi>n</mi><mo>−</mo></mrow></math></span>torus <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. As a consequence, we obtain that <span><math><mrow><msub><mrow><mo>lim</mo></mrow><mrow><mi>t</mi><mo>→</mo><mn>0</mn></mrow></msub><msubsup><mrow><mover><mrow><mi>S</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> almost everywhere if <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>+</mo><mi>γ</mi></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>(</mo><mi>L</mi><mi>o</mi><msup><mrow><mi>g</mi></mrow><mrow><mo>+</mo></mrow></msup><mi>L</mi><mo>)</mo></mrow></mrow><mrow><mi>θ</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>θ</mi><mo>></mo><mfrac><mrow><mn>1</mn><mo>−</mo><mi>γ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>+</mo><mi>γ</mi></mrow></mfrac></mrow></math></span>, <span><math><mrow><mo>−</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo><</mo><mi>γ</mi><mo><</mo><mn>1</mn></mrow></math></span> and that there exits an <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>+</mo><mi>γ</mi></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>(</mo><mi>L</mi><mi>o</mi><msup><mrow><mi>g</mi></mrow><mrow><mo>+</mo></mrow></msup><mi>L</mi><mo>)</mo></mrow></mrow><mrow><mi>θ</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>θ</mi><mo><</mo><mfrac><mrow><mn>1</mn><mo>−</mo><mi>γ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>+</mo><mi>γ</mi></mrow></mfrac></mrow></math></span>, <span><math><mrow><mn>0</mn><mo><</mo><mi>γ</mi><mo><</mo><mn>1</mn></mrow></math></span> such that <span><math><mrow><mo>lim</mo><msub><mrow><mo>sup</mo></mrow><mrow><mi>t</mi><mo>→</mo><mn>0</mn></mrow></msub><mfenced><mrow><msubsup><mrow><mover><mrow><mi>S</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfenced><mo>=</mo><mi>∞</mi></mrow></math></span> almost everywhere.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001512\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001512","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Convergence of Multiplier Operators on Compact Manifolds
We study a family of multiplier operators on compact manifolds , which is an analogue of the spherical average on . We establish the almost everywhere convergence of as . The result is an extension of a Stein’s theorem on . Let be an analogue of on the torus . As a consequence, we obtain that almost everywhere if with , and that there exits an with , such that almost everywhere.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.