紧凑流形上乘法算子的收敛性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xianghong Chen , Dashan Fan , Ziyao Liu
{"title":"紧凑流形上乘法算子的收敛性","authors":"Xianghong Chen ,&nbsp;Dashan Fan ,&nbsp;Ziyao Liu","doi":"10.1016/j.na.2024.113632","DOIUrl":null,"url":null,"abstract":"<div><p>We study a family of multiplier operators <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>γ</mi></mrow></msub><mfenced><mrow><mi>t</mi><mi>⋅</mi></mrow></mfenced></mrow></msub><mfenced><mrow><mi>f</mi></mrow></mfenced></mrow></math></span> on compact manifolds <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, which is an analogue of the spherical average <span><math><mrow><msubsup><mrow><mi>S</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mfenced><mrow><mi>f</mi></mrow></mfenced></mrow></math></span> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We establish the almost everywhere convergence of <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>γ</mi></mrow></msub><mfenced><mrow><mi>t</mi><mi>⋅</mi></mrow></mfenced></mrow></msub><mfenced><mrow><mi>f</mi></mrow></mfenced></mrow></math></span> as <span><math><mrow><mi>t</mi><mo>→</mo><mn>0</mn></mrow></math></span>. The result is an extension of a Stein’s theorem on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Let <span><math><msubsup><mrow><mover><mrow><mi>S</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup></math></span> be an analogue of <span><math><mrow><msubsup><mrow><mi>S</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mspace></mspace></mrow></math></span>on the <span><math><mrow><mi>n</mi><mo>−</mo></mrow></math></span>torus <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. As a consequence, we obtain that <span><math><mrow><msub><mrow><mo>lim</mo></mrow><mrow><mi>t</mi><mo>→</mo><mn>0</mn></mrow></msub><msubsup><mrow><mover><mrow><mi>S</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> almost everywhere if <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>+</mo><mi>γ</mi></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>(</mo><mi>L</mi><mi>o</mi><msup><mrow><mi>g</mi></mrow><mrow><mo>+</mo></mrow></msup><mi>L</mi><mo>)</mo></mrow></mrow><mrow><mi>θ</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>θ</mi><mo>&gt;</mo><mfrac><mrow><mn>1</mn><mo>−</mo><mi>γ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>+</mo><mi>γ</mi></mrow></mfrac></mrow></math></span>, <span><math><mrow><mo>−</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>&lt;</mo><mi>γ</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span> and that there exits an <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>+</mo><mi>γ</mi></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>(</mo><mi>L</mi><mi>o</mi><msup><mrow><mi>g</mi></mrow><mrow><mo>+</mo></mrow></msup><mi>L</mi><mo>)</mo></mrow></mrow><mrow><mi>θ</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>θ</mi><mo>&lt;</mo><mfrac><mrow><mn>1</mn><mo>−</mo><mi>γ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>+</mo><mi>γ</mi></mrow></mfrac></mrow></math></span>, <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>γ</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span> such that <span><math><mrow><mo>lim</mo><msub><mrow><mo>sup</mo></mrow><mrow><mi>t</mi><mo>→</mo><mn>0</mn></mrow></msub><mfenced><mrow><msubsup><mrow><mover><mrow><mi>S</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfenced><mo>=</mo><mi>∞</mi></mrow></math></span> almost everywhere.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence of Multiplier Operators on Compact Manifolds\",\"authors\":\"Xianghong Chen ,&nbsp;Dashan Fan ,&nbsp;Ziyao Liu\",\"doi\":\"10.1016/j.na.2024.113632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study a family of multiplier operators <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>γ</mi></mrow></msub><mfenced><mrow><mi>t</mi><mi>⋅</mi></mrow></mfenced></mrow></msub><mfenced><mrow><mi>f</mi></mrow></mfenced></mrow></math></span> on compact manifolds <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, which is an analogue of the spherical average <span><math><mrow><msubsup><mrow><mi>S</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mfenced><mrow><mi>f</mi></mrow></mfenced></mrow></math></span> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We establish the almost everywhere convergence of <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>γ</mi></mrow></msub><mfenced><mrow><mi>t</mi><mi>⋅</mi></mrow></mfenced></mrow></msub><mfenced><mrow><mi>f</mi></mrow></mfenced></mrow></math></span> as <span><math><mrow><mi>t</mi><mo>→</mo><mn>0</mn></mrow></math></span>. The result is an extension of a Stein’s theorem on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Let <span><math><msubsup><mrow><mover><mrow><mi>S</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup></math></span> be an analogue of <span><math><mrow><msubsup><mrow><mi>S</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mspace></mspace></mrow></math></span>on the <span><math><mrow><mi>n</mi><mo>−</mo></mrow></math></span>torus <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. As a consequence, we obtain that <span><math><mrow><msub><mrow><mo>lim</mo></mrow><mrow><mi>t</mi><mo>→</mo><mn>0</mn></mrow></msub><msubsup><mrow><mover><mrow><mi>S</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> almost everywhere if <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>+</mo><mi>γ</mi></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>(</mo><mi>L</mi><mi>o</mi><msup><mrow><mi>g</mi></mrow><mrow><mo>+</mo></mrow></msup><mi>L</mi><mo>)</mo></mrow></mrow><mrow><mi>θ</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>θ</mi><mo>&gt;</mo><mfrac><mrow><mn>1</mn><mo>−</mo><mi>γ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>+</mo><mi>γ</mi></mrow></mfrac></mrow></math></span>, <span><math><mrow><mo>−</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>&lt;</mo><mi>γ</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span> and that there exits an <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>+</mo><mi>γ</mi></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>(</mo><mi>L</mi><mi>o</mi><msup><mrow><mi>g</mi></mrow><mrow><mo>+</mo></mrow></msup><mi>L</mi><mo>)</mo></mrow></mrow><mrow><mi>θ</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>θ</mi><mo>&lt;</mo><mfrac><mrow><mn>1</mn><mo>−</mo><mi>γ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>+</mo><mi>γ</mi></mrow></mfrac></mrow></math></span>, <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>γ</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span> such that <span><math><mrow><mo>lim</mo><msub><mrow><mo>sup</mo></mrow><mrow><mi>t</mi><mo>→</mo><mn>0</mn></mrow></msub><mfenced><mrow><msubsup><mrow><mover><mrow><mi>S</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfenced><mo>=</mo><mi>∞</mi></mrow></math></span> almost everywhere.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001512\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001512","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了紧凑流形 Mn 上的乘法算子 Tmγt⋅f 族,它是 Rn 上球面平均 Stγf 的类似物。我们建立了 Tmγt⋅f 在 t→0 时的几乎无处收敛性。这一结果是斯坦因定理在 Rn 上的扩展。让 S˜tγ成为 n-Torus Tn 上 Stγ 的类似物。因此,如果 f∈Lnn-1+γ(Log+L)θ(Tn) 且 θ>1-γn-1+γ, -n-22<γ<;1,并且存在一个 f∈Lnn-1+γ(Log+L)θ(Tn),θ<1-γn-1+γ,0<γ<1,使得 limsupt→0S˜tγ(f)(x)=∞ 几乎无处不在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of Multiplier Operators on Compact Manifolds

We study a family of multiplier operators Tmγtf on compact manifolds Mn, which is an analogue of the spherical average Stγf on Rn. We establish the almost everywhere convergence of Tmγtf as t0. The result is an extension of a Stein’s theorem on Rn. Let S˜tγ be an analogue of Stγon the ntorus Tn. As a consequence, we obtain that limt0S˜tγ(f)(x)=f(x) almost everywhere if fLnn1+γ(Log+L)θ(Tn) with θ>1γn1+γ, n22<γ<1 and that there exits an fLnn1+γ(Log+L)θ(Tn) with θ<1γn1+γ, 0<γ<1 such that limsupt0S˜tγ(f)(x)= almost everywhere.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信