{"title":"准阿贝尔半凯利数图的代数度数","authors":"Shixin Wang , Majid Arezoomand , Tao Feng","doi":"10.1016/j.disc.2024.114178","DOIUrl":null,"url":null,"abstract":"<div><p>For a digraph Γ, if <em>F</em> is the smallest field that contains all roots of the characteristic polynomial of the adjacency matrix of Γ, then <em>F</em> is called the splitting field of Γ. The extension degree of <em>F</em> over the field of rational numbers <span><math><mi>Q</mi></math></span> is said to be the algebraic degree of Γ. A digraph is a semi-Cayley digraph over a group <em>G</em> if it admits <em>G</em> as a semiregular automorphism group with two orbits of equal size. A semi-Cayley digraph <span><math><mrow><mi>SC</mi></mrow><mo>(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>22</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>21</mn></mrow></msub><mo>)</mo></math></span> is called quasi-abelian if each of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>22</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>12</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>21</mn></mrow></msub></math></span> is a union of some conjugacy classes of <em>G</em>. This paper determines the splitting field and the algebraic degree of a quasi-abelian semi-Cayley digraph over any finite group in terms of irreducible characters of groups. This work generalizes the previous works on algebraic degrees of Cayley graphs over abelian groups and any group having a subgroup of index 2, and semi-Cayley digraphs over abelian groups.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic degrees of quasi-abelian semi-Cayley digraphs\",\"authors\":\"Shixin Wang , Majid Arezoomand , Tao Feng\",\"doi\":\"10.1016/j.disc.2024.114178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a digraph Γ, if <em>F</em> is the smallest field that contains all roots of the characteristic polynomial of the adjacency matrix of Γ, then <em>F</em> is called the splitting field of Γ. The extension degree of <em>F</em> over the field of rational numbers <span><math><mi>Q</mi></math></span> is said to be the algebraic degree of Γ. A digraph is a semi-Cayley digraph over a group <em>G</em> if it admits <em>G</em> as a semiregular automorphism group with two orbits of equal size. A semi-Cayley digraph <span><math><mrow><mi>SC</mi></mrow><mo>(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>22</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>21</mn></mrow></msub><mo>)</mo></math></span> is called quasi-abelian if each of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>22</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>12</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>21</mn></mrow></msub></math></span> is a union of some conjugacy classes of <em>G</em>. This paper determines the splitting field and the algebraic degree of a quasi-abelian semi-Cayley digraph over any finite group in terms of irreducible characters of groups. This work generalizes the previous works on algebraic degrees of Cayley graphs over abelian groups and any group having a subgroup of index 2, and semi-Cayley digraphs over abelian groups.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
对于数图 Γ 而言,如果 F 是包含 Γ 的邻接矩阵的特征多项式的所有根的最小域,那么 F 称为 Γ 的分裂域。F 在有理数域 Q 上的扩展度称为 Γ 的代数度。如果一个数图允许 G 作为具有两个大小相等的轨道的半圆自变群,那么它就是群 G 上的半 Cayley 数图。如果 T11、T22、T12 和 T21 中的每一个都是 G 的某些共轭类的联合,则半 Cayley 图 SC(G,T11,T22,T12,T21) 称为准阿贝尔图。本文用群的不可还原字符确定了任意有限群上的准阿贝尔半 Cayley 图的分裂域和代数度。这项工作推广了以前关于无穷群和任何具有指数为 2 的子群的群上的 Cayley 图的代数度以及无穷群上的半 Cayley 图的工作。
Algebraic degrees of quasi-abelian semi-Cayley digraphs
For a digraph Γ, if F is the smallest field that contains all roots of the characteristic polynomial of the adjacency matrix of Γ, then F is called the splitting field of Γ. The extension degree of F over the field of rational numbers is said to be the algebraic degree of Γ. A digraph is a semi-Cayley digraph over a group G if it admits G as a semiregular automorphism group with two orbits of equal size. A semi-Cayley digraph is called quasi-abelian if each of and is a union of some conjugacy classes of G. This paper determines the splitting field and the algebraic degree of a quasi-abelian semi-Cayley digraph over any finite group in terms of irreducible characters of groups. This work generalizes the previous works on algebraic degrees of Cayley graphs over abelian groups and any group having a subgroup of index 2, and semi-Cayley digraphs over abelian groups.