准阿贝尔半凯利数图的代数度数

Pub Date : 2024-07-22 DOI:10.1016/j.disc.2024.114178
Shixin Wang , Majid Arezoomand , Tao Feng
{"title":"准阿贝尔半凯利数图的代数度数","authors":"Shixin Wang ,&nbsp;Majid Arezoomand ,&nbsp;Tao Feng","doi":"10.1016/j.disc.2024.114178","DOIUrl":null,"url":null,"abstract":"<div><p>For a digraph Γ, if <em>F</em> is the smallest field that contains all roots of the characteristic polynomial of the adjacency matrix of Γ, then <em>F</em> is called the splitting field of Γ. The extension degree of <em>F</em> over the field of rational numbers <span><math><mi>Q</mi></math></span> is said to be the algebraic degree of Γ. A digraph is a semi-Cayley digraph over a group <em>G</em> if it admits <em>G</em> as a semiregular automorphism group with two orbits of equal size. A semi-Cayley digraph <span><math><mrow><mi>SC</mi></mrow><mo>(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>22</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>21</mn></mrow></msub><mo>)</mo></math></span> is called quasi-abelian if each of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>22</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>12</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>21</mn></mrow></msub></math></span> is a union of some conjugacy classes of <em>G</em>. This paper determines the splitting field and the algebraic degree of a quasi-abelian semi-Cayley digraph over any finite group in terms of irreducible characters of groups. This work generalizes the previous works on algebraic degrees of Cayley graphs over abelian groups and any group having a subgroup of index 2, and semi-Cayley digraphs over abelian groups.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic degrees of quasi-abelian semi-Cayley digraphs\",\"authors\":\"Shixin Wang ,&nbsp;Majid Arezoomand ,&nbsp;Tao Feng\",\"doi\":\"10.1016/j.disc.2024.114178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a digraph Γ, if <em>F</em> is the smallest field that contains all roots of the characteristic polynomial of the adjacency matrix of Γ, then <em>F</em> is called the splitting field of Γ. The extension degree of <em>F</em> over the field of rational numbers <span><math><mi>Q</mi></math></span> is said to be the algebraic degree of Γ. A digraph is a semi-Cayley digraph over a group <em>G</em> if it admits <em>G</em> as a semiregular automorphism group with two orbits of equal size. A semi-Cayley digraph <span><math><mrow><mi>SC</mi></mrow><mo>(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>22</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>21</mn></mrow></msub><mo>)</mo></math></span> is called quasi-abelian if each of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>22</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>12</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>21</mn></mrow></msub></math></span> is a union of some conjugacy classes of <em>G</em>. This paper determines the splitting field and the algebraic degree of a quasi-abelian semi-Cayley digraph over any finite group in terms of irreducible characters of groups. This work generalizes the previous works on algebraic degrees of Cayley graphs over abelian groups and any group having a subgroup of index 2, and semi-Cayley digraphs over abelian groups.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于数图 Γ 而言,如果 F 是包含 Γ 的邻接矩阵的特征多项式的所有根的最小域,那么 F 称为 Γ 的分裂域。F 在有理数域 Q 上的扩展度称为 Γ 的代数度。如果一个数图允许 G 作为具有两个大小相等的轨道的半圆自变群,那么它就是群 G 上的半 Cayley 数图。如果 T11、T22、T12 和 T21 中的每一个都是 G 的某些共轭类的联合,则半 Cayley 图 SC(G,T11,T22,T12,T21) 称为准阿贝尔图。本文用群的不可还原字符确定了任意有限群上的准阿贝尔半 Cayley 图的分裂域和代数度。这项工作推广了以前关于无穷群和任何具有指数为 2 的子群的群上的 Cayley 图的代数度以及无穷群上的半 Cayley 图的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Algebraic degrees of quasi-abelian semi-Cayley digraphs

For a digraph Γ, if F is the smallest field that contains all roots of the characteristic polynomial of the adjacency matrix of Γ, then F is called the splitting field of Γ. The extension degree of F over the field of rational numbers Q is said to be the algebraic degree of Γ. A digraph is a semi-Cayley digraph over a group G if it admits G as a semiregular automorphism group with two orbits of equal size. A semi-Cayley digraph SC(G,T11,T22,T12,T21) is called quasi-abelian if each of T11,T22,T12 and T21 is a union of some conjugacy classes of G. This paper determines the splitting field and the algebraic degree of a quasi-abelian semi-Cayley digraph over any finite group in terms of irreducible characters of groups. This work generalizes the previous works on algebraic degrees of Cayley graphs over abelian groups and any group having a subgroup of index 2, and semi-Cayley digraphs over abelian groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信