Na Huang , Xiaomao Lin , Fei Lun , Ruiyun Zeng , Gretchen F. Sassenrath , Zhihua Pan
{"title":"氮肥使用与气候的相互作用:对堪萨斯州玉米产量的影响","authors":"Na Huang , Xiaomao Lin , Fei Lun , Ruiyun Zeng , Gretchen F. Sassenrath , Zhihua Pan","doi":"10.1016/j.agsy.2024.104079","DOIUrl":null,"url":null,"abstract":"<div><h3>CONTEXT</h3><p>While climate change threatens maize growth and production, appropriate N fertilizer use (N) can help mitigate this threat and stabilize or improve maize yields. Accurate application of N fertilizer is of increasing interest as an adaptation measure for climate change by reducing greenhouse gas emissions and increasing economic returns.</p></div><div><h3>OBJECTIVE</h3><p>The objectives of this study are to: 1) clarify how maize yields respond to N fertilizer use under changes in temperature and precipitation, and 2) explore the effects of various climate conditions on N fertilizer use efficiency.</p></div><div><h3>METHODS</h3><p>We used a long-term and county-level maize N fertilizer use and climate dataset from 1981 to 2019 in Kansas to determine the impact of N fertilizer use on maize yield. We developed a panel data model with fixed effects, incorporating explanatory variables, including the interaction of growing-degree-days (GDD) with N fertilizer use (GDD<sub>it</sub>*N<sub>it</sub>), extreme-degree-days (EDD) with N fertilizer use (EDD<sub>it</sub>*N<sub>it</sub>), and precipitation (Precip) with N fertilizer use (Precip<sub>it</sub>*Nit), along with a non-linear N-fertilizer use term. Then, the adaptive effects of N fertilizer use on climatic risks for maize were examined and the county-level results were aggregated into the nine crop reporting districts, as defined by the U.S. Department of Agriculture's National Agricultural Statistics Service.</p></div><div><h3>RESULTS AND CONCLUSIONS</h3><p>Our results show that: 1) an increase in N fertilizer use magnified the negative effects of higher EDD on maize yield but enhanced the positive effects of higher GDD and precipitation on maize yield, impacts which were increasingly evident moving from western to eastern regions across Kansas; 2) hotter environments reduced maize yield by 7% in the west; conversely, warmer and wetter environmental conditions contributed to 2.4% yield gains in the southeast; changes in N fertilizer use impacted maize yield to a lesser extent than climate changes; and 3) under the averaged climate conditions, the optimal N fertilizer rate increased from northwestern (average 50 kg N ha<sup>−1</sup>) to eastern (average 158 kg N ha<sup>−1</sup>) regions in Kansas.</p></div><div><h3>SIGNIFICANCE</h3><p>Our results reveal the interaction between climate and N fertilization on maize yield and clarify how the efficiency of N fertilizer use is affected by various climatic conditions. Our findings highlight the quantifiable interactions between climate and N fertilizer use when evaluating dynamic N fertilizer applications and climate change adaptations.</p></div>","PeriodicalId":7730,"journal":{"name":"Agricultural Systems","volume":"220 ","pages":"Article 104079"},"PeriodicalIF":6.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0308521X24002294/pdfft?md5=c8f07bc5316b0c26f3192ea8e2d36f76&pid=1-s2.0-S0308521X24002294-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nitrogen fertilizer use and climate interactions: Implications for maize yields in Kansas\",\"authors\":\"Na Huang , Xiaomao Lin , Fei Lun , Ruiyun Zeng , Gretchen F. Sassenrath , Zhihua Pan\",\"doi\":\"10.1016/j.agsy.2024.104079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>CONTEXT</h3><p>While climate change threatens maize growth and production, appropriate N fertilizer use (N) can help mitigate this threat and stabilize or improve maize yields. Accurate application of N fertilizer is of increasing interest as an adaptation measure for climate change by reducing greenhouse gas emissions and increasing economic returns.</p></div><div><h3>OBJECTIVE</h3><p>The objectives of this study are to: 1) clarify how maize yields respond to N fertilizer use under changes in temperature and precipitation, and 2) explore the effects of various climate conditions on N fertilizer use efficiency.</p></div><div><h3>METHODS</h3><p>We used a long-term and county-level maize N fertilizer use and climate dataset from 1981 to 2019 in Kansas to determine the impact of N fertilizer use on maize yield. We developed a panel data model with fixed effects, incorporating explanatory variables, including the interaction of growing-degree-days (GDD) with N fertilizer use (GDD<sub>it</sub>*N<sub>it</sub>), extreme-degree-days (EDD) with N fertilizer use (EDD<sub>it</sub>*N<sub>it</sub>), and precipitation (Precip) with N fertilizer use (Precip<sub>it</sub>*Nit), along with a non-linear N-fertilizer use term. Then, the adaptive effects of N fertilizer use on climatic risks for maize were examined and the county-level results were aggregated into the nine crop reporting districts, as defined by the U.S. Department of Agriculture's National Agricultural Statistics Service.</p></div><div><h3>RESULTS AND CONCLUSIONS</h3><p>Our results show that: 1) an increase in N fertilizer use magnified the negative effects of higher EDD on maize yield but enhanced the positive effects of higher GDD and precipitation on maize yield, impacts which were increasingly evident moving from western to eastern regions across Kansas; 2) hotter environments reduced maize yield by 7% in the west; conversely, warmer and wetter environmental conditions contributed to 2.4% yield gains in the southeast; changes in N fertilizer use impacted maize yield to a lesser extent than climate changes; and 3) under the averaged climate conditions, the optimal N fertilizer rate increased from northwestern (average 50 kg N ha<sup>−1</sup>) to eastern (average 158 kg N ha<sup>−1</sup>) regions in Kansas.</p></div><div><h3>SIGNIFICANCE</h3><p>Our results reveal the interaction between climate and N fertilization on maize yield and clarify how the efficiency of N fertilizer use is affected by various climatic conditions. Our findings highlight the quantifiable interactions between climate and N fertilizer use when evaluating dynamic N fertilizer applications and climate change adaptations.</p></div>\",\"PeriodicalId\":7730,\"journal\":{\"name\":\"Agricultural Systems\",\"volume\":\"220 \",\"pages\":\"Article 104079\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0308521X24002294/pdfft?md5=c8f07bc5316b0c26f3192ea8e2d36f76&pid=1-s2.0-S0308521X24002294-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural Systems\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308521X24002294\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Systems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308521X24002294","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Nitrogen fertilizer use and climate interactions: Implications for maize yields in Kansas
CONTEXT
While climate change threatens maize growth and production, appropriate N fertilizer use (N) can help mitigate this threat and stabilize or improve maize yields. Accurate application of N fertilizer is of increasing interest as an adaptation measure for climate change by reducing greenhouse gas emissions and increasing economic returns.
OBJECTIVE
The objectives of this study are to: 1) clarify how maize yields respond to N fertilizer use under changes in temperature and precipitation, and 2) explore the effects of various climate conditions on N fertilizer use efficiency.
METHODS
We used a long-term and county-level maize N fertilizer use and climate dataset from 1981 to 2019 in Kansas to determine the impact of N fertilizer use on maize yield. We developed a panel data model with fixed effects, incorporating explanatory variables, including the interaction of growing-degree-days (GDD) with N fertilizer use (GDDit*Nit), extreme-degree-days (EDD) with N fertilizer use (EDDit*Nit), and precipitation (Precip) with N fertilizer use (Precipit*Nit), along with a non-linear N-fertilizer use term. Then, the adaptive effects of N fertilizer use on climatic risks for maize were examined and the county-level results were aggregated into the nine crop reporting districts, as defined by the U.S. Department of Agriculture's National Agricultural Statistics Service.
RESULTS AND CONCLUSIONS
Our results show that: 1) an increase in N fertilizer use magnified the negative effects of higher EDD on maize yield but enhanced the positive effects of higher GDD and precipitation on maize yield, impacts which were increasingly evident moving from western to eastern regions across Kansas; 2) hotter environments reduced maize yield by 7% in the west; conversely, warmer and wetter environmental conditions contributed to 2.4% yield gains in the southeast; changes in N fertilizer use impacted maize yield to a lesser extent than climate changes; and 3) under the averaged climate conditions, the optimal N fertilizer rate increased from northwestern (average 50 kg N ha−1) to eastern (average 158 kg N ha−1) regions in Kansas.
SIGNIFICANCE
Our results reveal the interaction between climate and N fertilization on maize yield and clarify how the efficiency of N fertilizer use is affected by various climatic conditions. Our findings highlight the quantifiable interactions between climate and N fertilizer use when evaluating dynamic N fertilizer applications and climate change adaptations.
期刊介绍:
Agricultural Systems is an international journal that deals with interactions - among the components of agricultural systems, among hierarchical levels of agricultural systems, between agricultural and other land use systems, and between agricultural systems and their natural, social and economic environments.
The scope includes the development and application of systems analysis methodologies in the following areas:
Systems approaches in the sustainable intensification of agriculture; pathways for sustainable intensification; crop-livestock integration; farm-level resource allocation; quantification of benefits and trade-offs at farm to landscape levels; integrative, participatory and dynamic modelling approaches for qualitative and quantitative assessments of agricultural systems and decision making;
The interactions between agricultural and non-agricultural landscapes; the multiple services of agricultural systems; food security and the environment;
Global change and adaptation science; transformational adaptations as driven by changes in climate, policy, values and attitudes influencing the design of farming systems;
Development and application of farming systems design tools and methods for impact, scenario and case study analysis; managing the complexities of dynamic agricultural systems; innovation systems and multi stakeholder arrangements that support or promote change and (or) inform policy decisions.