{"title":"论有限域上映射的线性表示、复杂性和反演","authors":"Ramachandran Ananthraman , Virendra Sule","doi":"10.1016/j.ffa.2024.102475","DOIUrl":null,"url":null,"abstract":"<div><p>This paper defines a linear representation for nonlinear maps <span><math><mi>F</mi><mo>:</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> where <span><math><mi>F</mi></math></span> is a finite field, in terms of matrices over <span><math><mi>F</mi></math></span>. This linear representation of the map <em>F</em> associates a unique number <em>N</em> and a unique matrix <em>M</em> in <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>N</mi><mo>×</mo><mi>N</mi></mrow></msup></math></span>, called the Linear Complexity and the Linear Representation of <em>F</em> respectively, and shows that the compositional powers <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> are represented by matrix powers <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>. It is shown that for a permutation map <em>F</em> with representation <em>M</em>, the inverse map has the linear representation <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. This framework of representation is extended to a parameterized family of maps <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mi>F</mi><mo>→</mo><mi>F</mi></math></span>, defined in terms of a parameter <span><math><mi>λ</mi><mo>∈</mo><mi>F</mi></math></span>, leading to the definition of an analogous linear complexity of the map <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, and a parameter-dependent matrix representation <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> defined over the univariate polynomial ring <span><math><mi>F</mi><mo>[</mo><mi>λ</mi><mo>]</mo></math></span>. Such a representation leads to the construction of a parametric inverse of such maps where the condition for invertibility is expressed through the unimodularity of this matrix representation <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span>. Apart from computing the compositional inverses of permutation polynomials, this linear representation is also used to compute the cycle structures of the permutation map. Lastly, this representation is extended to a representation of the cyclic group generated by a permutation map <em>F</em>, and to the group generated by a finite number of permutation maps over <span><math><mi>F</mi></math></span>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On linear representation, complexity and inversion of maps over finite fields\",\"authors\":\"Ramachandran Ananthraman , Virendra Sule\",\"doi\":\"10.1016/j.ffa.2024.102475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper defines a linear representation for nonlinear maps <span><math><mi>F</mi><mo>:</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> where <span><math><mi>F</mi></math></span> is a finite field, in terms of matrices over <span><math><mi>F</mi></math></span>. This linear representation of the map <em>F</em> associates a unique number <em>N</em> and a unique matrix <em>M</em> in <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>N</mi><mo>×</mo><mi>N</mi></mrow></msup></math></span>, called the Linear Complexity and the Linear Representation of <em>F</em> respectively, and shows that the compositional powers <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> are represented by matrix powers <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>. It is shown that for a permutation map <em>F</em> with representation <em>M</em>, the inverse map has the linear representation <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. This framework of representation is extended to a parameterized family of maps <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mi>F</mi><mo>→</mo><mi>F</mi></math></span>, defined in terms of a parameter <span><math><mi>λ</mi><mo>∈</mo><mi>F</mi></math></span>, leading to the definition of an analogous linear complexity of the map <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, and a parameter-dependent matrix representation <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> defined over the univariate polynomial ring <span><math><mi>F</mi><mo>[</mo><mi>λ</mi><mo>]</mo></math></span>. Such a representation leads to the construction of a parametric inverse of such maps where the condition for invertibility is expressed through the unimodularity of this matrix representation <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span>. Apart from computing the compositional inverses of permutation polynomials, this linear representation is also used to compute the cycle structures of the permutation map. Lastly, this representation is extended to a representation of the cyclic group generated by a permutation map <em>F</em>, and to the group generated by a finite number of permutation maps over <span><math><mi>F</mi></math></span>.</p></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S107157972400114X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S107157972400114X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文定义了非线性映射 F:Fn→Fn 的线性表示,其中 F 是有限域,用 F 上的矩阵表示。映射 F 的这种线性表示关联了 FN×N 中唯一的数 N 和唯一的矩阵 M,分别称为 F 的线性复杂性和线性表示,并表明组成幂 F(k) 由矩阵幂 Mk 表示。这个表示框架被扩展到参数化的映射 Fλ(x):F→F 系列,以参数 λ∈F 定义,从而定义了映射 Fλ(x) 的类似线性复杂性,以及定义在单变量多项式环 F[λ] 上的与参数相关的矩阵表示 Mλ。通过这种表示,可以构建这种映射的参数逆,其中可逆性的条件是通过这种矩阵表示 Mλ 的单调性来表达的。除了计算置换多项式的组成逆之外,这种线性表示还用于计算置换映射的循环结构。最后,这一表示法被扩展为由置换映射 F 生成的循环群的表示法,以及由 F 上有限个置换映射生成的群的表示法。
On linear representation, complexity and inversion of maps over finite fields
This paper defines a linear representation for nonlinear maps where is a finite field, in terms of matrices over . This linear representation of the map F associates a unique number N and a unique matrix M in , called the Linear Complexity and the Linear Representation of F respectively, and shows that the compositional powers are represented by matrix powers . It is shown that for a permutation map F with representation M, the inverse map has the linear representation . This framework of representation is extended to a parameterized family of maps , defined in terms of a parameter , leading to the definition of an analogous linear complexity of the map , and a parameter-dependent matrix representation defined over the univariate polynomial ring . Such a representation leads to the construction of a parametric inverse of such maps where the condition for invertibility is expressed through the unimodularity of this matrix representation . Apart from computing the compositional inverses of permutation polynomials, this linear representation is also used to compute the cycle structures of the permutation map. Lastly, this representation is extended to a representation of the cyclic group generated by a permutation map F, and to the group generated by a finite number of permutation maps over .
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.