论倒克罗斯特曼和的代数度

IF 1.2 3区 数学 Q1 MATHEMATICS
Xin Lin , Daqing Wan
{"title":"论倒克罗斯特曼和的代数度","authors":"Xin Lin ,&nbsp;Daqing Wan","doi":"10.1016/j.ffa.2024.102477","DOIUrl":null,"url":null,"abstract":"<div><p>The study of <em>n</em>-dimensional inverted Kloosterman sums was suggested by Katz (1995) <span><span>[7]</span></span> who handled the case when <span><math><mi>n</mi><mo>=</mo><mn>1</mn></math></span> from complex point of view. For general <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, the <em>n</em>-dimensional inverted Kloosterman sums were studied from both complex and <em>p</em>-adic point of view in our previous paper (2024) <span><span>[10]</span></span>. In this note, we study the algebraic degree of the inverted <em>n</em>-dimensional Kloosterman sum as an algebraic integer.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On algebraic degrees of inverted Kloosterman sums\",\"authors\":\"Xin Lin ,&nbsp;Daqing Wan\",\"doi\":\"10.1016/j.ffa.2024.102477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study of <em>n</em>-dimensional inverted Kloosterman sums was suggested by Katz (1995) <span><span>[7]</span></span> who handled the case when <span><math><mi>n</mi><mo>=</mo><mn>1</mn></math></span> from complex point of view. For general <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, the <em>n</em>-dimensional inverted Kloosterman sums were studied from both complex and <em>p</em>-adic point of view in our previous paper (2024) <span><span>[10]</span></span>. In this note, we study the algebraic degree of the inverted <em>n</em>-dimensional Kloosterman sum as an algebraic integer.</p></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724001163\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001163","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

n 维倒克罗斯特曼和的研究是由 Katz(1995)[7] 提出的,他从复数角度处理了 n=1 的情况。对于一般 n≥1,我们在之前的论文 (2024) [10] 中从复数和 p-adic 角度研究了 n 维倒克洛斯特曼和。在本注释中,我们将研究作为代数整数的 n 维克罗斯特曼倒数和的代数度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On algebraic degrees of inverted Kloosterman sums

The study of n-dimensional inverted Kloosterman sums was suggested by Katz (1995) [7] who handled the case when n=1 from complex point of view. For general n1, the n-dimensional inverted Kloosterman sums were studied from both complex and p-adic point of view in our previous paper (2024) [10]. In this note, we study the algebraic degree of the inverted n-dimensional Kloosterman sum as an algebraic integer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信