关于有限域中 r 次根的计算

IF 1.2 3区 数学 Q1 MATHEMATICS
Gook Hwa Cho , Soonhak Kwon
{"title":"关于有限域中 r 次根的计算","authors":"Gook Hwa Cho ,&nbsp;Soonhak Kwon","doi":"10.1016/j.ffa.2024.102479","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>q</em> be a power of a prime such that <span><math><mi>q</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mi>r</mi><mo>)</mo></math></span>. Let <em>c</em> be an <em>r</em>-th power residue over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. In this paper, we present a new <em>r</em>-th root formula which generalizes G.H. Cho et al.'s cube root algorithm, and which provides a refinement of Williams' Cipolla-Lehmer based procedure. Our algorithm which is based on the recurrence relations arising from irreducible polynomial <span><math><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>+</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>b</mi><mo>+</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>r</mi></mrow></msup><mi>r</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> with <span><math><mi>b</mi><mo>=</mo><mi>c</mi><mo>+</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mi>r</mi></math></span> requires only <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mi>q</mi><mo>+</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>)</mo></math></span> multiplications for <span><math><mi>r</mi><mo>&gt;</mo><mn>1</mn></math></span>. The multiplications for computation of the main exponentiation of our algorithm are half of that of the Williams' Cipolla-Lehmer type algorithms.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102479"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the computation of r-th roots in finite fields\",\"authors\":\"Gook Hwa Cho ,&nbsp;Soonhak Kwon\",\"doi\":\"10.1016/j.ffa.2024.102479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>q</em> be a power of a prime such that <span><math><mi>q</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mi>r</mi><mo>)</mo></math></span>. Let <em>c</em> be an <em>r</em>-th power residue over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. In this paper, we present a new <em>r</em>-th root formula which generalizes G.H. Cho et al.'s cube root algorithm, and which provides a refinement of Williams' Cipolla-Lehmer based procedure. Our algorithm which is based on the recurrence relations arising from irreducible polynomial <span><math><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>+</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>b</mi><mo>+</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>r</mi></mrow></msup><mi>r</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> with <span><math><mi>b</mi><mo>=</mo><mi>c</mi><mo>+</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mi>r</mi></math></span> requires only <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mi>q</mi><mo>+</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>)</mo></math></span> multiplications for <span><math><mi>r</mi><mo>&gt;</mo><mn>1</mn></math></span>. The multiplications for computation of the main exponentiation of our algorithm are half of that of the Williams' Cipolla-Lehmer type algorithms.</p></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"99 \",\"pages\":\"Article 102479\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724001187\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001187","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 q 是一个质数的幂,使得 q≡1(modr)。设 c 是 Fq 上的 r 次幂残差。在本文中,我们提出了一个新的 r-th 根公式,它概括了 G.H. Cho 等人的立方根算法,并对 Williams 基于 Cipolla-Lehmer 的程序进行了改进。我们的算法基于不可还原多项式 h(x)=xr+(-1)r+1(b+(-1)rr)(x-1) 所产生的递推关系,其中 b=c+(-1)r+1r 对于 r>1 只需要 O(r2logq+r4) 次乘法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the computation of r-th roots in finite fields

Let q be a power of a prime such that q1(modr). Let c be an r-th power residue over Fq. In this paper, we present a new r-th root formula which generalizes G.H. Cho et al.'s cube root algorithm, and which provides a refinement of Williams' Cipolla-Lehmer based procedure. Our algorithm which is based on the recurrence relations arising from irreducible polynomial h(x)=xr+(1)r+1(b+(1)rr)(x1) with b=c+(1)r+1r requires only O(r2logq+r4) multiplications for r>1. The multiplications for computation of the main exponentiation of our algorithm are half of that of the Williams' Cipolla-Lehmer type algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信