{"title":"用于灵敏人体运动感应的高粘性、超快自愈合和导电性多巴胺基聚合物水凝胶","authors":"Hang Zhou, and , Xudong Yu*, ","doi":"10.1021/acsapm.4c0149910.1021/acsapm.4c01499","DOIUrl":null,"url":null,"abstract":"<p >The use of hydrogel strain sensors in flexible electronic wearable devices has garnered significant attention. However, achieving hydrogels with comprehensive properties such as excellent tensile strength, strong adhesion, rapid self-healing, and high sensitivity simultaneously remains challenging. Herein, inspired by mussels, we developed a straightforward polymerization process in an aqueous solution using the polymerizable monomer 3-methylacryloyldopamine, containing the catechol structural unit, along with acrylic acid, sodium acrylate, ethylene imine polymer, and the zwitterionic monomer [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl). This resulted in a hydrogel with a double-network structure featuring multiple dynamic interactions. The hydrogel sensor exhibited remarkable tensile properties (up to 4200%), strong adhesion (adhesion for wood: 3370 kPa), rapid self-healing ability (3 s), and high sensitivity (GF = 13.75), allowing for accurate and repeatable detection of both large-scale and subtle human movements. Furthermore, the addition of glycerol endowed the hydrogel with the capability of functioning at low temperatures (−40 °C). Such adhesive and self-healing dopamine-based hydrogel also has potential in electronic skins, hydrogel dressing, and human–machine interface.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"6 14","pages":"8548–8559 8548–8559"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Adhesive, Ultrafast Self-Healing, and Conductive Dopamine-Based Polymer Hydrogels for Sensitive Human Motion Sensing\",\"authors\":\"Hang Zhou, and , Xudong Yu*, \",\"doi\":\"10.1021/acsapm.4c0149910.1021/acsapm.4c01499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The use of hydrogel strain sensors in flexible electronic wearable devices has garnered significant attention. However, achieving hydrogels with comprehensive properties such as excellent tensile strength, strong adhesion, rapid self-healing, and high sensitivity simultaneously remains challenging. Herein, inspired by mussels, we developed a straightforward polymerization process in an aqueous solution using the polymerizable monomer 3-methylacryloyldopamine, containing the catechol structural unit, along with acrylic acid, sodium acrylate, ethylene imine polymer, and the zwitterionic monomer [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl). This resulted in a hydrogel with a double-network structure featuring multiple dynamic interactions. The hydrogel sensor exhibited remarkable tensile properties (up to 4200%), strong adhesion (adhesion for wood: 3370 kPa), rapid self-healing ability (3 s), and high sensitivity (GF = 13.75), allowing for accurate and repeatable detection of both large-scale and subtle human movements. Furthermore, the addition of glycerol endowed the hydrogel with the capability of functioning at low temperatures (−40 °C). Such adhesive and self-healing dopamine-based hydrogel also has potential in electronic skins, hydrogel dressing, and human–machine interface.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":\"6 14\",\"pages\":\"8548–8559 8548–8559\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsapm.4c01499\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.4c01499","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Highly Adhesive, Ultrafast Self-Healing, and Conductive Dopamine-Based Polymer Hydrogels for Sensitive Human Motion Sensing
The use of hydrogel strain sensors in flexible electronic wearable devices has garnered significant attention. However, achieving hydrogels with comprehensive properties such as excellent tensile strength, strong adhesion, rapid self-healing, and high sensitivity simultaneously remains challenging. Herein, inspired by mussels, we developed a straightforward polymerization process in an aqueous solution using the polymerizable monomer 3-methylacryloyldopamine, containing the catechol structural unit, along with acrylic acid, sodium acrylate, ethylene imine polymer, and the zwitterionic monomer [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl). This resulted in a hydrogel with a double-network structure featuring multiple dynamic interactions. The hydrogel sensor exhibited remarkable tensile properties (up to 4200%), strong adhesion (adhesion for wood: 3370 kPa), rapid self-healing ability (3 s), and high sensitivity (GF = 13.75), allowing for accurate and repeatable detection of both large-scale and subtle human movements. Furthermore, the addition of glycerol endowed the hydrogel with the capability of functioning at low temperatures (−40 °C). Such adhesive and self-healing dopamine-based hydrogel also has potential in electronic skins, hydrogel dressing, and human–machine interface.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.