Ibrahim Dawod*, Kajwal Patra, Sebastian Cardoch, H. Olof Jönsson, Jonas A. Sellberg, Andrew V. Martin, Jack Binns, Oscar Grånäs, Adrian P. Mancuso, Carl Caleman and Nicusor Timneanu*,
{"title":"超快非热加热诱导冰各向异性熔化的理论研究","authors":"Ibrahim Dawod*, Kajwal Patra, Sebastian Cardoch, H. Olof Jönsson, Jonas A. Sellberg, Andrew V. Martin, Jack Binns, Oscar Grånäs, Adrian P. Mancuso, Carl Caleman and Nicusor Timneanu*, ","doi":"10.1021/acsphyschemau.3c0007210.1021/acsphyschemau.3c00072","DOIUrl":null,"url":null,"abstract":"<p >Water and ice are routinely studied with X-rays to reveal their diverse structures and anomalous properties. We employ a hybrid collisional-radiative/molecular-dynamics method to explore how femtosecond X-ray pulses interact with hexagonal ice. We find that ice makes a phase transition into a crystalline plasma where its initial structure is maintained up to tens of femtoseconds. The ultrafast melting process occurs anisotropically, where different geometric configurations of the structure melt on different time scales. The transient state and anisotropic melting of crystals can be captured by X-ray diffraction, which impacts any study of crystalline structures probed by femtosecond X-ray lasers.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.3c00072","citationCount":"0","resultStr":"{\"title\":\"Theoretical Studies of Anisotropic Melting of Ice Induced by Ultrafast Nonthermal Heating\",\"authors\":\"Ibrahim Dawod*, Kajwal Patra, Sebastian Cardoch, H. Olof Jönsson, Jonas A. Sellberg, Andrew V. Martin, Jack Binns, Oscar Grånäs, Adrian P. Mancuso, Carl Caleman and Nicusor Timneanu*, \",\"doi\":\"10.1021/acsphyschemau.3c0007210.1021/acsphyschemau.3c00072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Water and ice are routinely studied with X-rays to reveal their diverse structures and anomalous properties. We employ a hybrid collisional-radiative/molecular-dynamics method to explore how femtosecond X-ray pulses interact with hexagonal ice. We find that ice makes a phase transition into a crystalline plasma where its initial structure is maintained up to tens of femtoseconds. The ultrafast melting process occurs anisotropically, where different geometric configurations of the structure melt on different time scales. The transient state and anisotropic melting of crystals can be captured by X-ray diffraction, which impacts any study of crystalline structures probed by femtosecond X-ray lasers.</p>\",\"PeriodicalId\":29796,\"journal\":{\"name\":\"ACS Physical Chemistry Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.3c00072\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Physical Chemistry Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
人们经常用 X 射线研究水和冰,以揭示它们的不同结构和异常特性。我们采用碰撞辐射/分子动力学混合方法来探索飞秒 X 射线脉冲如何与六角冰相互作用。我们发现,冰会发生相变,转变为晶体等离子体,其初始结构可维持数十飞秒。超快熔化过程以各向异性的方式发生,不同几何构型的结构在不同的时间尺度上熔化。晶体的瞬态和各向异性熔化可通过 X 射线衍射捕捉到,这对任何利用飞秒 X 射线激光探测晶体结构的研究都有影响。
Theoretical Studies of Anisotropic Melting of Ice Induced by Ultrafast Nonthermal Heating
Water and ice are routinely studied with X-rays to reveal their diverse structures and anomalous properties. We employ a hybrid collisional-radiative/molecular-dynamics method to explore how femtosecond X-ray pulses interact with hexagonal ice. We find that ice makes a phase transition into a crystalline plasma where its initial structure is maintained up to tens of femtoseconds. The ultrafast melting process occurs anisotropically, where different geometric configurations of the structure melt on different time scales. The transient state and anisotropic melting of crystals can be captured by X-ray diffraction, which impacts any study of crystalline structures probed by femtosecond X-ray lasers.
期刊介绍:
ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis