Xing Tian, Jiayi Cheng, Lei Yang*, Zhanxian Li* and Mingming Yu*,
{"title":"细胞内极性和 H2O2 波动的近红外双通道荧光探针及其在炎症和铁变态反应可视化中的应用","authors":"Xing Tian, Jiayi Cheng, Lei Yang*, Zhanxian Li* and Mingming Yu*, ","doi":"10.1021/cbmi.3c0012310.1021/cbmi.3c00123","DOIUrl":null,"url":null,"abstract":"<p >Hydrogen peroxide and polarity are closely related to many physiological activities and pathological processes. However, near-infrared fluorescent probes that are sensitive to both H<sub>2</sub>O<sub>2</sub> and polarity are still scarce. Herein, we developed the first dual-channel near-infrared fluorescent probe NBO, with an AIE effect, enabling simultaneous monitoring of H<sub>2</sub>O<sub>2</sub> and polarity. The probe presented high sensitivity, high selectivity, and low detection limit for H<sub>2</sub>O<sub>2</sub>. It also had high sensitivity to polarity, independent of pH and viscosity, with large Stokes shifts, good photostability, and low cytotoxicity. Moreover, NBO was able to detect both endogenous and exogenous H<sub>2</sub>O<sub>2</sub> as well as polarity fluctuations <i>in vivo</i> as a method to effectively differentiate between cancer cells and normal cells. Importantly, it also could monitor the therapeutic effects of drugs in inflammation and iron-dead cells and mice. Based on NIR emission, NBO could be used as an imaging tool and a way to evaluate the therapeutic effect of drugs for inflammation and ferroptosis.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 7","pages":"518–525 518–525"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.3c00123","citationCount":"0","resultStr":"{\"title\":\"A NIR Dual-Channel Fluorescent Probe for Fluctuations of Intracellular Polarity and H2O2 and Its Applications for the Visualization of Inflammation and Ferroptosis\",\"authors\":\"Xing Tian, Jiayi Cheng, Lei Yang*, Zhanxian Li* and Mingming Yu*, \",\"doi\":\"10.1021/cbmi.3c0012310.1021/cbmi.3c00123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hydrogen peroxide and polarity are closely related to many physiological activities and pathological processes. However, near-infrared fluorescent probes that are sensitive to both H<sub>2</sub>O<sub>2</sub> and polarity are still scarce. Herein, we developed the first dual-channel near-infrared fluorescent probe NBO, with an AIE effect, enabling simultaneous monitoring of H<sub>2</sub>O<sub>2</sub> and polarity. The probe presented high sensitivity, high selectivity, and low detection limit for H<sub>2</sub>O<sub>2</sub>. It also had high sensitivity to polarity, independent of pH and viscosity, with large Stokes shifts, good photostability, and low cytotoxicity. Moreover, NBO was able to detect both endogenous and exogenous H<sub>2</sub>O<sub>2</sub> as well as polarity fluctuations <i>in vivo</i> as a method to effectively differentiate between cancer cells and normal cells. Importantly, it also could monitor the therapeutic effects of drugs in inflammation and iron-dead cells and mice. Based on NIR emission, NBO could be used as an imaging tool and a way to evaluate the therapeutic effect of drugs for inflammation and ferroptosis.</p>\",\"PeriodicalId\":53181,\"journal\":{\"name\":\"Chemical & Biomedical Imaging\",\"volume\":\"2 7\",\"pages\":\"518–525 518–525\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/cbmi.3c00123\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical & Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/cbmi.3c00123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.3c00123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A NIR Dual-Channel Fluorescent Probe for Fluctuations of Intracellular Polarity and H2O2 and Its Applications for the Visualization of Inflammation and Ferroptosis
Hydrogen peroxide and polarity are closely related to many physiological activities and pathological processes. However, near-infrared fluorescent probes that are sensitive to both H2O2 and polarity are still scarce. Herein, we developed the first dual-channel near-infrared fluorescent probe NBO, with an AIE effect, enabling simultaneous monitoring of H2O2 and polarity. The probe presented high sensitivity, high selectivity, and low detection limit for H2O2. It also had high sensitivity to polarity, independent of pH and viscosity, with large Stokes shifts, good photostability, and low cytotoxicity. Moreover, NBO was able to detect both endogenous and exogenous H2O2 as well as polarity fluctuations in vivo as a method to effectively differentiate between cancer cells and normal cells. Importantly, it also could monitor the therapeutic effects of drugs in inflammation and iron-dead cells and mice. Based on NIR emission, NBO could be used as an imaging tool and a way to evaluate the therapeutic effect of drugs for inflammation and ferroptosis.
期刊介绍:
Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging