基于时域的 8b-precison 16-Kb FDSOI 8T SRAM CIM 宏,用于高能效边缘人工智能设备

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yongliang Zhou , Yiming Wei , Tianzhu Xiong , Zixuan Zhou , Zhen Yang , Xiao Lin , Wei Hu , Xiulong Wu , Chunyu Peng
{"title":"基于时域的 8b-precison 16-Kb FDSOI 8T SRAM CIM 宏,用于高能效边缘人工智能设备","authors":"Yongliang Zhou ,&nbsp;Yiming Wei ,&nbsp;Tianzhu Xiong ,&nbsp;Zixuan Zhou ,&nbsp;Zhen Yang ,&nbsp;Xiao Lin ,&nbsp;Wei Hu ,&nbsp;Xiulong Wu ,&nbsp;Chunyu Peng","doi":"10.1016/j.mejo.2024.106308","DOIUrl":null,"url":null,"abstract":"<div><p>Compute-in-memory has been increasingly appreciated by researchers as a well-suited hardware accelerator in convolutional neural networks (CNNs), because it can achieve low power consumption and high inference accuracy. This work presents a novel TD-CIM structure using:1) A Capacitor Charging scheme that uses Compact 8T Model for multiply-and-accumulate (MAC) Operations with serials inputs in Time Domain Level; 2) a new replicated bit-line time-domain converter (RBL-TDC) to achieve the quantization of the multiply-accumulate operations with high accuracy; 3) A 22 nm FD-SOI 16 Kb TD-CIM macro fabricated using foundry provided compact 8T-SRAM cells, which achieves normalized energy efficiency(EF) of 5816.5 TOPS/W, normalized area efficiency(64TOPS/mm<sup>2</sup>), and 8-bit weight for 8-bit serials inputs with 64 accumulations per cycle, as well as output precision(14b) in the MAC operation. This work also obtains an inference accuracy of 92.57 % on the VGG-16 network using the Cifar10 dataset over PVT variations.</p></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An 8b-Precison 16-Kb FDSOI 8T SRAM CIM macro based on time-domain for energy-efficient edge AI devices\",\"authors\":\"Yongliang Zhou ,&nbsp;Yiming Wei ,&nbsp;Tianzhu Xiong ,&nbsp;Zixuan Zhou ,&nbsp;Zhen Yang ,&nbsp;Xiao Lin ,&nbsp;Wei Hu ,&nbsp;Xiulong Wu ,&nbsp;Chunyu Peng\",\"doi\":\"10.1016/j.mejo.2024.106308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Compute-in-memory has been increasingly appreciated by researchers as a well-suited hardware accelerator in convolutional neural networks (CNNs), because it can achieve low power consumption and high inference accuracy. This work presents a novel TD-CIM structure using:1) A Capacitor Charging scheme that uses Compact 8T Model for multiply-and-accumulate (MAC) Operations with serials inputs in Time Domain Level; 2) a new replicated bit-line time-domain converter (RBL-TDC) to achieve the quantization of the multiply-accumulate operations with high accuracy; 3) A 22 nm FD-SOI 16 Kb TD-CIM macro fabricated using foundry provided compact 8T-SRAM cells, which achieves normalized energy efficiency(EF) of 5816.5 TOPS/W, normalized area efficiency(64TOPS/mm<sup>2</sup>), and 8-bit weight for 8-bit serials inputs with 64 accumulations per cycle, as well as output precision(14b) in the MAC operation. This work also obtains an inference accuracy of 92.57 % on the VGG-16 network using the Cifar10 dataset over PVT variations.</p></div>\",\"PeriodicalId\":49818,\"journal\":{\"name\":\"Microelectronics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879239124000122\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239124000122","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

内存计算作为卷积神经网络(CNN)的理想硬件加速器,因其可实现低功耗和高推理精度而日益受到研究人员的重视。本研究提出了一种新型 TD-CIM 结构,该结构采用:1)一种电容充电方案,该方案使用紧凑型 8T 模型,用于时域级串行输入的乘法累加(MAC)操作;2)一种新型复制位线时域转换器(RBL-TDC),用于实现高精度的乘法累加操作量化;3)一种 22 纳米 FD-SOI 16 Kb TD-CIM 宏,该宏采用代工厂提供的紧凑型 8T-SRAM 单元制造,实现了归一化能效(EF)5816.5 TOPS/W、归一化面积效率(64TOPS/mm2)、每周期 64 次累加的 8 位串行输入的 8 位权重以及 MAC 操作中的输出精度(14b)。这项研究还利用 Cifar10 数据集,在 PVT 变化情况下获得了 92.57 % 的 VGG-16 网络推理精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An 8b-Precison 16-Kb FDSOI 8T SRAM CIM macro based on time-domain for energy-efficient edge AI devices

Compute-in-memory has been increasingly appreciated by researchers as a well-suited hardware accelerator in convolutional neural networks (CNNs), because it can achieve low power consumption and high inference accuracy. This work presents a novel TD-CIM structure using:1) A Capacitor Charging scheme that uses Compact 8T Model for multiply-and-accumulate (MAC) Operations with serials inputs in Time Domain Level; 2) a new replicated bit-line time-domain converter (RBL-TDC) to achieve the quantization of the multiply-accumulate operations with high accuracy; 3) A 22 nm FD-SOI 16 Kb TD-CIM macro fabricated using foundry provided compact 8T-SRAM cells, which achieves normalized energy efficiency(EF) of 5816.5 TOPS/W, normalized area efficiency(64TOPS/mm2), and 8-bit weight for 8-bit serials inputs with 64 accumulations per cycle, as well as output precision(14b) in the MAC operation. This work also obtains an inference accuracy of 92.57 % on the VGG-16 network using the Cifar10 dataset over PVT variations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronics Journal
Microelectronics Journal 工程技术-工程:电子与电气
CiteScore
4.00
自引率
27.30%
发文量
222
审稿时长
43 days
期刊介绍: Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems. The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc. Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信