NEGR1 通过调控成年嗅觉神经发生调节小鼠的情感辨别能力

IF 4 Q2 NEUROSCIENCES
Kwang Hwan Kim , Kyungchul Noh , Jaesung Lee , Soojin Lee , Sung Joong Lee
{"title":"NEGR1 通过调控成年嗅觉神经发生调节小鼠的情感辨别能力","authors":"Kwang Hwan Kim ,&nbsp;Kyungchul Noh ,&nbsp;Jaesung Lee ,&nbsp;Soojin Lee ,&nbsp;Sung Joong Lee","doi":"10.1016/j.bpsgos.2024.100355","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Affective recognition and sensory processing are impaired in people with autism. However, no mouse model of autism comanifesting these symptoms is available, thereby limiting the exploration of the relationship between affective recognition and sensory processing in autism and the molecular mechanisms involved.</p></div><div><h3>Methods</h3><p>With <em>Negr1</em><sup>−/−</sup> mice, we conducted the affective state discrimination test and an odor habituation/dishabituation test. Data were analyzed using the <em>k</em>-means clustering method. We also employed a whole-cell patch clamp and bromodeoxyuridine incorporation assay to investigate underlying mechanisms.</p></div><div><h3>Results</h3><p>When encountering mice exposed to restraint stress or chronic pain, wild-type mice discriminated between them by either approaching the stressed mouse or avoiding the painful mouse, whereas <em>Negr1</em><sup>−/−</sup> mice showed unbiased social interactions with them. Next, we demonstrated that both wild-type and <em>Negr1</em><sup>−/−</sup> mice used their olfaction for social interaction in the experimental context, but <em>Negr1</em><sup>−/−</sup> mice showed aberrant olfactory habituation and dishabituation against social odors. In electrophysiological studies, inhibitory inputs to the mitral cells in the olfactory bulb were increased in <em>Negr1</em><sup>−/−</sup> mice compared with wild-type mice, and subsequently their excitability was decreased. As a potential underlying mechanism, we found that adult neurogenesis in the subventricular zone was diminished in <em>Negr1</em><sup>−/−</sup> mice, which resulted in decreased integration of newly generated inhibitory neurons in the olfactory bulb.</p></div><div><h3>Conclusions</h3><p>NEGR1 contributes to mouse affective recognition, possibly by regulating olfactory neurogenesis and subsequent olfactory sensory processing. We propose a novel neurobiological mechanism of autism-related behaviors based on disrupted adult olfactory neurogenesis.</p></div>","PeriodicalId":72373,"journal":{"name":"Biological psychiatry global open science","volume":"4 5","pages":"Article 100355"},"PeriodicalIF":4.0000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667174324000685/pdfft?md5=3047facdeec4d46893952541055234f7&pid=1-s2.0-S2667174324000685-main.pdf","citationCount":"0","resultStr":"{\"title\":\"NEGR1 Modulates Mouse Affective Discrimination by Regulating Adult Olfactory Neurogenesis\",\"authors\":\"Kwang Hwan Kim ,&nbsp;Kyungchul Noh ,&nbsp;Jaesung Lee ,&nbsp;Soojin Lee ,&nbsp;Sung Joong Lee\",\"doi\":\"10.1016/j.bpsgos.2024.100355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Affective recognition and sensory processing are impaired in people with autism. However, no mouse model of autism comanifesting these symptoms is available, thereby limiting the exploration of the relationship between affective recognition and sensory processing in autism and the molecular mechanisms involved.</p></div><div><h3>Methods</h3><p>With <em>Negr1</em><sup>−/−</sup> mice, we conducted the affective state discrimination test and an odor habituation/dishabituation test. Data were analyzed using the <em>k</em>-means clustering method. We also employed a whole-cell patch clamp and bromodeoxyuridine incorporation assay to investigate underlying mechanisms.</p></div><div><h3>Results</h3><p>When encountering mice exposed to restraint stress or chronic pain, wild-type mice discriminated between them by either approaching the stressed mouse or avoiding the painful mouse, whereas <em>Negr1</em><sup>−/−</sup> mice showed unbiased social interactions with them. Next, we demonstrated that both wild-type and <em>Negr1</em><sup>−/−</sup> mice used their olfaction for social interaction in the experimental context, but <em>Negr1</em><sup>−/−</sup> mice showed aberrant olfactory habituation and dishabituation against social odors. In electrophysiological studies, inhibitory inputs to the mitral cells in the olfactory bulb were increased in <em>Negr1</em><sup>−/−</sup> mice compared with wild-type mice, and subsequently their excitability was decreased. As a potential underlying mechanism, we found that adult neurogenesis in the subventricular zone was diminished in <em>Negr1</em><sup>−/−</sup> mice, which resulted in decreased integration of newly generated inhibitory neurons in the olfactory bulb.</p></div><div><h3>Conclusions</h3><p>NEGR1 contributes to mouse affective recognition, possibly by regulating olfactory neurogenesis and subsequent olfactory sensory processing. We propose a novel neurobiological mechanism of autism-related behaviors based on disrupted adult olfactory neurogenesis.</p></div>\",\"PeriodicalId\":72373,\"journal\":{\"name\":\"Biological psychiatry global open science\",\"volume\":\"4 5\",\"pages\":\"Article 100355\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667174324000685/pdfft?md5=3047facdeec4d46893952541055234f7&pid=1-s2.0-S2667174324000685-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological psychiatry global open science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667174324000685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological psychiatry global open science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667174324000685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景自闭症患者的情感识别和感觉处理能力受损。方法我们用 Negr1-/- 小鼠进行了情感状态辨别测试和气味习惯化/去习惯化测试。我们使用K-均值聚类方法对数据进行了分析。结果当野生型小鼠遇到暴露于束缚应激或慢性疼痛的小鼠时,会通过接近应激小鼠或避开疼痛小鼠来区分它们,而 Negr1-/- 小鼠则与它们进行无偏见的社会交往。接下来,我们证明野生型小鼠和 Negr1-/- 小鼠都在实验环境中利用嗅觉进行社会交往,但 Negr1-/- 小鼠对社会气味表现出异常的嗅觉习惯化和失习惯化。在电生理学研究中,与野生型小鼠相比,Negr1-/-小鼠嗅球中丝裂细胞的抑制性输入增加,其兴奋性随之降低。作为潜在的潜在机制,我们发现 Negr1-/- 小鼠脑室下区的成神经元发生减少,从而导致嗅球中新生成的抑制性神经元的整合能力下降。我们提出了自闭症相关行为的一种新的神经生物学机制,其基础是成人嗅觉神经发生的紊乱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NEGR1 Modulates Mouse Affective Discrimination by Regulating Adult Olfactory Neurogenesis

Background

Affective recognition and sensory processing are impaired in people with autism. However, no mouse model of autism comanifesting these symptoms is available, thereby limiting the exploration of the relationship between affective recognition and sensory processing in autism and the molecular mechanisms involved.

Methods

With Negr1−/− mice, we conducted the affective state discrimination test and an odor habituation/dishabituation test. Data were analyzed using the k-means clustering method. We also employed a whole-cell patch clamp and bromodeoxyuridine incorporation assay to investigate underlying mechanisms.

Results

When encountering mice exposed to restraint stress or chronic pain, wild-type mice discriminated between them by either approaching the stressed mouse or avoiding the painful mouse, whereas Negr1−/− mice showed unbiased social interactions with them. Next, we demonstrated that both wild-type and Negr1−/− mice used their olfaction for social interaction in the experimental context, but Negr1−/− mice showed aberrant olfactory habituation and dishabituation against social odors. In electrophysiological studies, inhibitory inputs to the mitral cells in the olfactory bulb were increased in Negr1−/− mice compared with wild-type mice, and subsequently their excitability was decreased. As a potential underlying mechanism, we found that adult neurogenesis in the subventricular zone was diminished in Negr1−/− mice, which resulted in decreased integration of newly generated inhibitory neurons in the olfactory bulb.

Conclusions

NEGR1 contributes to mouse affective recognition, possibly by regulating olfactory neurogenesis and subsequent olfactory sensory processing. We propose a novel neurobiological mechanism of autism-related behaviors based on disrupted adult olfactory neurogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological psychiatry global open science
Biological psychiatry global open science Psychiatry and Mental Health
CiteScore
4.00
自引率
0.00%
发文量
0
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信