{"title":"重温非均质平面波的光吸收功率密度","authors":"Aurelien Bruyant , Kuan-Ting Wu , Sylvain Blaize","doi":"10.1016/j.rio.2024.100728","DOIUrl":null,"url":null,"abstract":"<div><p>We review the analytical expressions for the complex Poynting’s vector in the case of arbitrary plane-waves in a lossy isotropic medium. We demonstrate how these expressions can be used to recover the optical absorption power density <span><math><mi>Q</mi></math></span>, considering the divergence of the time-averaged Poynting vector. This quantity, proportional to the imaginary part of the dielectric function and the field intensity, i.e. <span><math><mrow><mi>Q</mi><mo>∝</mo><msup><mrow><mrow><mo>|</mo><mi>E</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>ɛ</mi></mrow></math></span>”, is usually established for harmonic fields, using the Poynting’s identity. The derivation from the complex Poynting vector expression is more direct for TE-polarized homogeneous waves, but the derivation encompasses the other cases like inhomogeneous TM plane waves. As an application, the optical absorption profile <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> within 1D multilayers is detailed using matrix transfer method for both TE and TM plane waves, including the evanescent case.</p></div>","PeriodicalId":21151,"journal":{"name":"Results in Optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666950124001251/pdfft?md5=e01ff260595dacac0fa279a806ecdc8f&pid=1-s2.0-S2666950124001251-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Revisiting optical absorption power density of inhomogeneous plane waves\",\"authors\":\"Aurelien Bruyant , Kuan-Ting Wu , Sylvain Blaize\",\"doi\":\"10.1016/j.rio.2024.100728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We review the analytical expressions for the complex Poynting’s vector in the case of arbitrary plane-waves in a lossy isotropic medium. We demonstrate how these expressions can be used to recover the optical absorption power density <span><math><mi>Q</mi></math></span>, considering the divergence of the time-averaged Poynting vector. This quantity, proportional to the imaginary part of the dielectric function and the field intensity, i.e. <span><math><mrow><mi>Q</mi><mo>∝</mo><msup><mrow><mrow><mo>|</mo><mi>E</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>ɛ</mi></mrow></math></span>”, is usually established for harmonic fields, using the Poynting’s identity. The derivation from the complex Poynting vector expression is more direct for TE-polarized homogeneous waves, but the derivation encompasses the other cases like inhomogeneous TM plane waves. As an application, the optical absorption profile <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> within 1D multilayers is detailed using matrix transfer method for both TE and TM plane waves, including the evanescent case.</p></div>\",\"PeriodicalId\":21151,\"journal\":{\"name\":\"Results in Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666950124001251/pdfft?md5=e01ff260595dacac0fa279a806ecdc8f&pid=1-s2.0-S2666950124001251-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666950124001251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Optics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666950124001251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
摘要
我们回顾了在有损各向同性介质中任意平面波情况下复数 Poynting 向量的分析表达式。我们演示了如何利用这些表达式来恢复光吸收功率密度 Q,同时考虑到时间平均波因廷矢量的发散。这个量与介电函数的虚部和场强(即 Q∝|E|2ɛ")成正比,通常是利用波因廷特性为谐波场建立的。对于 TE 偏振的均质波,从复数 Poynting 向量表达式推导更为直接,但推导也包括其他情况,如非均质 TM 平面波。在应用中,使用矩阵转移法详细说明了一维多层膜内的光吸收曲线 Q(x),包括蒸发情况下的 TE 和 TM 平面波。
Revisiting optical absorption power density of inhomogeneous plane waves
We review the analytical expressions for the complex Poynting’s vector in the case of arbitrary plane-waves in a lossy isotropic medium. We demonstrate how these expressions can be used to recover the optical absorption power density , considering the divergence of the time-averaged Poynting vector. This quantity, proportional to the imaginary part of the dielectric function and the field intensity, i.e. ”, is usually established for harmonic fields, using the Poynting’s identity. The derivation from the complex Poynting vector expression is more direct for TE-polarized homogeneous waves, but the derivation encompasses the other cases like inhomogeneous TM plane waves. As an application, the optical absorption profile within 1D multilayers is detailed using matrix transfer method for both TE and TM plane waves, including the evanescent case.