重温非均质平面波的光吸收功率密度

Q3 Physics and Astronomy
Aurelien Bruyant , Kuan-Ting Wu , Sylvain Blaize
{"title":"重温非均质平面波的光吸收功率密度","authors":"Aurelien Bruyant ,&nbsp;Kuan-Ting Wu ,&nbsp;Sylvain Blaize","doi":"10.1016/j.rio.2024.100728","DOIUrl":null,"url":null,"abstract":"<div><p>We review the analytical expressions for the complex Poynting’s vector in the case of arbitrary plane-waves in a lossy isotropic medium. We demonstrate how these expressions can be used to recover the optical absorption power density <span><math><mi>Q</mi></math></span>, considering the divergence of the time-averaged Poynting vector. This quantity, proportional to the imaginary part of the dielectric function and the field intensity, i.e. <span><math><mrow><mi>Q</mi><mo>∝</mo><msup><mrow><mrow><mo>|</mo><mi>E</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>ɛ</mi></mrow></math></span>”, is usually established for harmonic fields, using the Poynting’s identity. The derivation from the complex Poynting vector expression is more direct for TE-polarized homogeneous waves, but the derivation encompasses the other cases like inhomogeneous TM plane waves. As an application, the optical absorption profile <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> within 1D multilayers is detailed using matrix transfer method for both TE and TM plane waves, including the evanescent case.</p></div>","PeriodicalId":21151,"journal":{"name":"Results in Optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666950124001251/pdfft?md5=e01ff260595dacac0fa279a806ecdc8f&pid=1-s2.0-S2666950124001251-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Revisiting optical absorption power density of inhomogeneous plane waves\",\"authors\":\"Aurelien Bruyant ,&nbsp;Kuan-Ting Wu ,&nbsp;Sylvain Blaize\",\"doi\":\"10.1016/j.rio.2024.100728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We review the analytical expressions for the complex Poynting’s vector in the case of arbitrary plane-waves in a lossy isotropic medium. We demonstrate how these expressions can be used to recover the optical absorption power density <span><math><mi>Q</mi></math></span>, considering the divergence of the time-averaged Poynting vector. This quantity, proportional to the imaginary part of the dielectric function and the field intensity, i.e. <span><math><mrow><mi>Q</mi><mo>∝</mo><msup><mrow><mrow><mo>|</mo><mi>E</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>ɛ</mi></mrow></math></span>”, is usually established for harmonic fields, using the Poynting’s identity. The derivation from the complex Poynting vector expression is more direct for TE-polarized homogeneous waves, but the derivation encompasses the other cases like inhomogeneous TM plane waves. As an application, the optical absorption profile <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> within 1D multilayers is detailed using matrix transfer method for both TE and TM plane waves, including the evanescent case.</p></div>\",\"PeriodicalId\":21151,\"journal\":{\"name\":\"Results in Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666950124001251/pdfft?md5=e01ff260595dacac0fa279a806ecdc8f&pid=1-s2.0-S2666950124001251-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666950124001251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Optics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666950124001251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们回顾了在有损各向同性介质中任意平面波情况下复数 Poynting 向量的分析表达式。我们演示了如何利用这些表达式来恢复光吸收功率密度 Q,同时考虑到时间平均波因廷矢量的发散。这个量与介电函数的虚部和场强(即 Q∝|E|2ɛ")成正比,通常是利用波因廷特性为谐波场建立的。对于 TE 偏振的均质波,从复数 Poynting 向量表达式推导更为直接,但推导也包括其他情况,如非均质 TM 平面波。在应用中,使用矩阵转移法详细说明了一维多层膜内的光吸收曲线 Q(x),包括蒸发情况下的 TE 和 TM 平面波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting optical absorption power density of inhomogeneous plane waves

We review the analytical expressions for the complex Poynting’s vector in the case of arbitrary plane-waves in a lossy isotropic medium. We demonstrate how these expressions can be used to recover the optical absorption power density Q, considering the divergence of the time-averaged Poynting vector. This quantity, proportional to the imaginary part of the dielectric function and the field intensity, i.e. Q|E|2ɛ”, is usually established for harmonic fields, using the Poynting’s identity. The derivation from the complex Poynting vector expression is more direct for TE-polarized homogeneous waves, but the derivation encompasses the other cases like inhomogeneous TM plane waves. As an application, the optical absorption profile Q(x) within 1D multilayers is detailed using matrix transfer method for both TE and TM plane waves, including the evanescent case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Optics
Results in Optics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
2.50
自引率
0.00%
发文量
115
审稿时长
71 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信