{"title":"关于在滴流床反应器中应用支柱式和新型片式周期性开放细胞结构 (POCS) 强化气液传质的概念研究","authors":"Hendrik Held, Hannsjörg Freund","doi":"10.1016/j.cep.2024.109930","DOIUrl":null,"url":null,"abstract":"<div><p>Rapid progress in the development of additive manufacturing technology enables the production of structured reactor internals of complex geometry. To address mass transport limitations structured internals can be used in trickle bed reactors (TBRs) as the most frequently used reactor for heterogeneously catalyzed multiphase reactions. However, reactions in TBRs are frequently limited by gas–liquid mass transfer.</p><p>As periodic open cellular structures (POCS) as reactor internals were not addressed regarding g–l mass transfer yet, this contribution provides first data on gas–liquid mass transfer for different types of POCS. Therefore, desorption of dissolved oxygen in water with nitrogen gas and the two-phase pressure drop were measured. Strut-based Kelvin and diamond unit cell POCS were compared to a sphere random packed bed as a benchmark. A novel sheet-based unit cell was developed realizing meandering channels demonstrating a fivefold increase in volumetric mass transfer coefficient compared to the benchmark. To compare the performance of the setup with literature data, state of the art neural network correlations were used for comparison. This proof of concept highlights the potential of additively manufactured POCS for intensified processes in trickle bed reactors, and demonstrates their versatility in application.</p></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S025527012400268X/pdfft?md5=fc04facca46d6674665c11432932839d&pid=1-s2.0-S025527012400268X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Conceptual study on the intensification of gas–liquid mass transfer in trickle bed reactors by the application of strut-based and novel sheet-based periodic open cellular structures (POCS)\",\"authors\":\"Hendrik Held, Hannsjörg Freund\",\"doi\":\"10.1016/j.cep.2024.109930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rapid progress in the development of additive manufacturing technology enables the production of structured reactor internals of complex geometry. To address mass transport limitations structured internals can be used in trickle bed reactors (TBRs) as the most frequently used reactor for heterogeneously catalyzed multiphase reactions. However, reactions in TBRs are frequently limited by gas–liquid mass transfer.</p><p>As periodic open cellular structures (POCS) as reactor internals were not addressed regarding g–l mass transfer yet, this contribution provides first data on gas–liquid mass transfer for different types of POCS. Therefore, desorption of dissolved oxygen in water with nitrogen gas and the two-phase pressure drop were measured. Strut-based Kelvin and diamond unit cell POCS were compared to a sphere random packed bed as a benchmark. A novel sheet-based unit cell was developed realizing meandering channels demonstrating a fivefold increase in volumetric mass transfer coefficient compared to the benchmark. To compare the performance of the setup with literature data, state of the art neural network correlations were used for comparison. This proof of concept highlights the potential of additively manufactured POCS for intensified processes in trickle bed reactors, and demonstrates their versatility in application.</p></div>\",\"PeriodicalId\":9929,\"journal\":{\"name\":\"Chemical Engineering and Processing - Process Intensification\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S025527012400268X/pdfft?md5=fc04facca46d6674665c11432932839d&pid=1-s2.0-S025527012400268X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering and Processing - Process Intensification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S025527012400268X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S025527012400268X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Conceptual study on the intensification of gas–liquid mass transfer in trickle bed reactors by the application of strut-based and novel sheet-based periodic open cellular structures (POCS)
Rapid progress in the development of additive manufacturing technology enables the production of structured reactor internals of complex geometry. To address mass transport limitations structured internals can be used in trickle bed reactors (TBRs) as the most frequently used reactor for heterogeneously catalyzed multiphase reactions. However, reactions in TBRs are frequently limited by gas–liquid mass transfer.
As periodic open cellular structures (POCS) as reactor internals were not addressed regarding g–l mass transfer yet, this contribution provides first data on gas–liquid mass transfer for different types of POCS. Therefore, desorption of dissolved oxygen in water with nitrogen gas and the two-phase pressure drop were measured. Strut-based Kelvin and diamond unit cell POCS were compared to a sphere random packed bed as a benchmark. A novel sheet-based unit cell was developed realizing meandering channels demonstrating a fivefold increase in volumetric mass transfer coefficient compared to the benchmark. To compare the performance of the setup with literature data, state of the art neural network correlations were used for comparison. This proof of concept highlights the potential of additively manufactured POCS for intensified processes in trickle bed reactors, and demonstrates their versatility in application.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.