{"title":"利用含有生物质衍生碳点的双光转换薄膜增强植物光合作用","authors":"","doi":"10.1016/j.ccst.2024.100253","DOIUrl":null,"url":null,"abstract":"<div><p>Enhancing photosynthesis is a pivotal strategy for achieving sustainable plant production. Blue and red light facilitate plant growth since these wavelengths are readily absorbed by chlorophyll pigments and power crucial photosynthetic processes. In this investigation, double light conversion films were prepared by incorporating biomass-derived carbon dots into a polyvinyl alcohol matrix (CDs@PVAs). The study conclusively demonstrated that CDs@PVAs can convert ultraviolet and green light from sunlight into blue and red light. Using 2-week-old <em>Athaliana</em> plants as the model organism, the <em>Athaliana</em> plants were covered with CDs@PVAs and then exposed to simulated sunlight (0.57 mW cm<sup>−2</sup>) for 1 hour. The Fv/Fm value in the presence of the CDs@PVAs was approximately 12% higher than without the film, indicating a significant boost in photosynthesis. Analysis of gene expression showed that the CDs@PVAs cause significant upregulation of genes associated with photosynthesis. These double light conversion films thus emerge as promising contenders for eco-friendly plant cultivation methods that circumvent reliance on electric power. Their potential applications in agriculture are substantial, underscoring their significance in promoting sustainable practices.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000654/pdfft?md5=e879356f7616643a75bc51401f93a861&pid=1-s2.0-S2772656824000654-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing plant photosynthesis with dual light conversion films incorporating biomass-derived carbon dots\",\"authors\":\"\",\"doi\":\"10.1016/j.ccst.2024.100253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Enhancing photosynthesis is a pivotal strategy for achieving sustainable plant production. Blue and red light facilitate plant growth since these wavelengths are readily absorbed by chlorophyll pigments and power crucial photosynthetic processes. In this investigation, double light conversion films were prepared by incorporating biomass-derived carbon dots into a polyvinyl alcohol matrix (CDs@PVAs). The study conclusively demonstrated that CDs@PVAs can convert ultraviolet and green light from sunlight into blue and red light. Using 2-week-old <em>Athaliana</em> plants as the model organism, the <em>Athaliana</em> plants were covered with CDs@PVAs and then exposed to simulated sunlight (0.57 mW cm<sup>−2</sup>) for 1 hour. The Fv/Fm value in the presence of the CDs@PVAs was approximately 12% higher than without the film, indicating a significant boost in photosynthesis. Analysis of gene expression showed that the CDs@PVAs cause significant upregulation of genes associated with photosynthesis. These double light conversion films thus emerge as promising contenders for eco-friendly plant cultivation methods that circumvent reliance on electric power. Their potential applications in agriculture are substantial, underscoring their significance in promoting sustainable practices.</p></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772656824000654/pdfft?md5=e879356f7616643a75bc51401f93a861&pid=1-s2.0-S2772656824000654-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656824000654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824000654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing plant photosynthesis with dual light conversion films incorporating biomass-derived carbon dots
Enhancing photosynthesis is a pivotal strategy for achieving sustainable plant production. Blue and red light facilitate plant growth since these wavelengths are readily absorbed by chlorophyll pigments and power crucial photosynthetic processes. In this investigation, double light conversion films were prepared by incorporating biomass-derived carbon dots into a polyvinyl alcohol matrix (CDs@PVAs). The study conclusively demonstrated that CDs@PVAs can convert ultraviolet and green light from sunlight into blue and red light. Using 2-week-old Athaliana plants as the model organism, the Athaliana plants were covered with CDs@PVAs and then exposed to simulated sunlight (0.57 mW cm−2) for 1 hour. The Fv/Fm value in the presence of the CDs@PVAs was approximately 12% higher than without the film, indicating a significant boost in photosynthesis. Analysis of gene expression showed that the CDs@PVAs cause significant upregulation of genes associated with photosynthesis. These double light conversion films thus emerge as promising contenders for eco-friendly plant cultivation methods that circumvent reliance on electric power. Their potential applications in agriculture are substantial, underscoring their significance in promoting sustainable practices.