了解多节足模型之间的设计差异及其对关节运动结果的影响

IF 2.4 3区 医学 Q3 BIOPHYSICS
{"title":"了解多节足模型之间的设计差异及其对关节运动结果的影响","authors":"","doi":"10.1016/j.jbiomech.2024.112260","DOIUrl":null,"url":null,"abstract":"<div><p>Multisegmented foot models (MSFMs) are used to capture data of specific regions of the foot instead of representing the foot as a single, rigid segment. It has been documented that different MSFMs do not yield the same joint kinematic data, but there is little information available regarding their use for kinetic analysis. We compared the moment and power at the tibiotalar, midtarsal, and metatarsophalangeal joints of four MSFMs using motion capture data of young adult runners during stance phase of barefoot walking and jogging. Of these models, three were previously validated: the Oxford, Milwaukee, and Ghent Foot Models. One model was developed based upon literature review of existing models: the “Vogel” model. We performed statistical parametric mapping comparing joint measurements from each model to the corresponding results from the Oxford model, the most heavily studied MSFM. We found that the Oxford, Milwaukee, Vogel, and Ghent Foot Models do not provide the same kinetic results. The differences in segment definitions impact the degrees of freedom in a manner that alters the measured kinematic function of the foot, which in turn impacts the kinetic results. The results of this study capture the variability in performance of MSFMs as it relates to kinetic outcomes and emphasize a need to remain aware of model differences when interpreting results.</p></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the design differences between multisegmented foot models and their impact on joint kinetic outcomes\",\"authors\":\"\",\"doi\":\"10.1016/j.jbiomech.2024.112260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multisegmented foot models (MSFMs) are used to capture data of specific regions of the foot instead of representing the foot as a single, rigid segment. It has been documented that different MSFMs do not yield the same joint kinematic data, but there is little information available regarding their use for kinetic analysis. We compared the moment and power at the tibiotalar, midtarsal, and metatarsophalangeal joints of four MSFMs using motion capture data of young adult runners during stance phase of barefoot walking and jogging. Of these models, three were previously validated: the Oxford, Milwaukee, and Ghent Foot Models. One model was developed based upon literature review of existing models: the “Vogel” model. We performed statistical parametric mapping comparing joint measurements from each model to the corresponding results from the Oxford model, the most heavily studied MSFM. We found that the Oxford, Milwaukee, Vogel, and Ghent Foot Models do not provide the same kinetic results. The differences in segment definitions impact the degrees of freedom in a manner that alters the measured kinematic function of the foot, which in turn impacts the kinetic results. The results of this study capture the variability in performance of MSFMs as it relates to kinetic outcomes and emphasize a need to remain aware of model differences when interpreting results.</p></div>\",\"PeriodicalId\":15168,\"journal\":{\"name\":\"Journal of biomechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021929024003385\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929024003385","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

多节足模型(MSFM)用于捕捉足部特定区域的数据,而不是将足部表示为单一的刚性节段。有资料表明,不同的多分节足模型所产生的关节运动学数据并不相同,但有关这些模型用于运动学分析的资料却很少。我们利用年轻成年跑步者在赤足行走和慢跑的站立阶段的运动捕捉数据,比较了四种 MSFM 在胫骨、跗骨中段和跖趾关节处的力矩和力量。在这些模型中,牛津足模型、密尔沃基足模型和根特足模型中的三个已经过验证。还有一个模型是根据对现有模型的文献综述开发的:"Vogel "模型。我们进行了统计参数绘图,将每个模型的关节测量结果与牛津模型的相应结果进行比较,牛津模型是研究最多的 MSFM 模型。我们发现,牛津足模型、密尔沃基足模型、沃格尔足模型和根特足模型提供的动力学结果并不相同。脚段定义的不同会影响自由度,从而改变测量到的脚的运动学功能,进而影响运动学结果。本研究的结果反映了 MSFM 与运动结果相关的性能差异,并强调在解释结果时需要注意模型差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding the design differences between multisegmented foot models and their impact on joint kinetic outcomes

Multisegmented foot models (MSFMs) are used to capture data of specific regions of the foot instead of representing the foot as a single, rigid segment. It has been documented that different MSFMs do not yield the same joint kinematic data, but there is little information available regarding their use for kinetic analysis. We compared the moment and power at the tibiotalar, midtarsal, and metatarsophalangeal joints of four MSFMs using motion capture data of young adult runners during stance phase of barefoot walking and jogging. Of these models, three were previously validated: the Oxford, Milwaukee, and Ghent Foot Models. One model was developed based upon literature review of existing models: the “Vogel” model. We performed statistical parametric mapping comparing joint measurements from each model to the corresponding results from the Oxford model, the most heavily studied MSFM. We found that the Oxford, Milwaukee, Vogel, and Ghent Foot Models do not provide the same kinetic results. The differences in segment definitions impact the degrees of freedom in a manner that alters the measured kinematic function of the foot, which in turn impacts the kinetic results. The results of this study capture the variability in performance of MSFMs as it relates to kinetic outcomes and emphasize a need to remain aware of model differences when interpreting results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of biomechanics
Journal of biomechanics 生物-工程:生物医学
CiteScore
5.10
自引率
4.20%
发文量
345
审稿时长
1 months
期刊介绍: The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: -Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. -Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. -Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. -Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. -Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. -Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. -Molecular Biomechanics - Mechanical analyses of biomolecules. -Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. -Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. -Sports Biomechanics - Mechanical analyses of sports performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信