{"title":"IL-33 通过 IL-33/ST2 通路介导神经脊髓炎视网膜频谱疾病中的小胶质细胞极化,从而缓解神经损伤","authors":"","doi":"10.1016/j.ibneur.2024.07.008","DOIUrl":null,"url":null,"abstract":"<div><p>Interleukin-33 (IL-33) is a member of the interleukin-1 cytokine family. Its function in regulating microglial M1/M2 polarization in neuromyelitis optica spectrum disorder (NMOSD) is still unelucidated. To evaluate the role of IL-33 in NMOSD, we constructed NMOSD mice model by injecting purified serum IgG from AQP4-IgG seropositive NMOSD patients into experimental autoimmune encephalomyelitis (EAE) mice, and IL-33 was intraperitoneally injected into NMOSD mice 3 d before the model induction. We found that pretreatment of the NMOSD mice with IL-33 relieved brain neuron loss, and demyelination and improved the structure of axons, astrocytes, and mitochondria. In the neuronal and microglial coculture system, pretreatment with IL-33 in microglia alleviated NMOSD serum-induced inflammation and damaged morphology in cultured neurons. IL-33 transformed microglia to the M2 phenotype, and NMOSD serum promoted microglia to the M1 phenotype in cultured BV2 cells. Moreover, IL-33 influenced microglial polarity via the IL-33/ST2 pathway. IL-33 may be a novel insight useful for further developing NMOSD-targeted therapy and drug development.</p></div>","PeriodicalId":13195,"journal":{"name":"IBRO Neuroscience Reports","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667242124000708/pdfft?md5=f227b6420c787bafa3e0955d021cd661&pid=1-s2.0-S2667242124000708-main.pdf","citationCount":"0","resultStr":"{\"title\":\"IL-33 relieves nerve injury by mediating microglial polarization in neuromyelitis optica spectrum disorders via the IL-33/ST2 pathway\",\"authors\":\"\",\"doi\":\"10.1016/j.ibneur.2024.07.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Interleukin-33 (IL-33) is a member of the interleukin-1 cytokine family. Its function in regulating microglial M1/M2 polarization in neuromyelitis optica spectrum disorder (NMOSD) is still unelucidated. To evaluate the role of IL-33 in NMOSD, we constructed NMOSD mice model by injecting purified serum IgG from AQP4-IgG seropositive NMOSD patients into experimental autoimmune encephalomyelitis (EAE) mice, and IL-33 was intraperitoneally injected into NMOSD mice 3 d before the model induction. We found that pretreatment of the NMOSD mice with IL-33 relieved brain neuron loss, and demyelination and improved the structure of axons, astrocytes, and mitochondria. In the neuronal and microglial coculture system, pretreatment with IL-33 in microglia alleviated NMOSD serum-induced inflammation and damaged morphology in cultured neurons. IL-33 transformed microglia to the M2 phenotype, and NMOSD serum promoted microglia to the M1 phenotype in cultured BV2 cells. Moreover, IL-33 influenced microglial polarity via the IL-33/ST2 pathway. IL-33 may be a novel insight useful for further developing NMOSD-targeted therapy and drug development.</p></div>\",\"PeriodicalId\":13195,\"journal\":{\"name\":\"IBRO Neuroscience Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667242124000708/pdfft?md5=f227b6420c787bafa3e0955d021cd661&pid=1-s2.0-S2667242124000708-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IBRO Neuroscience Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667242124000708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IBRO Neuroscience Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667242124000708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
IL-33 relieves nerve injury by mediating microglial polarization in neuromyelitis optica spectrum disorders via the IL-33/ST2 pathway
Interleukin-33 (IL-33) is a member of the interleukin-1 cytokine family. Its function in regulating microglial M1/M2 polarization in neuromyelitis optica spectrum disorder (NMOSD) is still unelucidated. To evaluate the role of IL-33 in NMOSD, we constructed NMOSD mice model by injecting purified serum IgG from AQP4-IgG seropositive NMOSD patients into experimental autoimmune encephalomyelitis (EAE) mice, and IL-33 was intraperitoneally injected into NMOSD mice 3 d before the model induction. We found that pretreatment of the NMOSD mice with IL-33 relieved brain neuron loss, and demyelination and improved the structure of axons, astrocytes, and mitochondria. In the neuronal and microglial coculture system, pretreatment with IL-33 in microglia alleviated NMOSD serum-induced inflammation and damaged morphology in cultured neurons. IL-33 transformed microglia to the M2 phenotype, and NMOSD serum promoted microglia to the M1 phenotype in cultured BV2 cells. Moreover, IL-33 influenced microglial polarity via the IL-33/ST2 pathway. IL-33 may be a novel insight useful for further developing NMOSD-targeted therapy and drug development.