Tao Feng , Wei Guo , Kui Yan , Feng Zhao , Fankun Zeng , Jialong Zhao
{"title":"烯烃嵌段共聚物/铜/聚丙烯复合材料在 IMD/MIM 工艺中的发泡和机械性能研究","authors":"Tao Feng , Wei Guo , Kui Yan , Feng Zhao , Fankun Zeng , Jialong Zhao","doi":"10.1016/j.mtla.2024.102185","DOIUrl":null,"url":null,"abstract":"<div><p>In advancing towards carbon neutrality in the automotive industry, polypropylene (PP) plays a crucial role in improving fuel efficiency and reducing carbon emissions as a pivotal lightweight material. However, PP faces challenges in microcellular foaming, including surface quality concerns, intricate molding parameters, and compromised mechanical strength, limiting its broader application. This research introduces an innovative strategy by integrating Olefin Block Copolymer (OBC) into the Talc/PP composite framework using In-mold Decoration/Microcellular Injection Molding (IMD/MIM) techniques to overcome these limitations. Experimental findings reveal that modulating the OBC proportion substantially enhances the PP composites' functionality. Notably, an inclusion of 10 wt% OBC decreases the material's viscosity, and raising the OBC level to 30 wt% markedly improves surface quality with fewer defects. Analyzing cell configuration confirms OBC's beneficial effect on cell size and distribution, particularly in the homogeneity of cells across the material's layers. For mechanical performance, incorporating OBC increased the impact strength from 13.2 kJ/m² to 17.9 kJ/m², highlighting OBC's potential in enhancing PP's toughness. This study enriches our understanding of optimizing PP-based microcellular foamed materials, supporting the development of next-generation lightweight materials. Future efforts will focus on further refinement of the OBC/Talc/PP system for superior performance and practical industrial viability.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"36 ","pages":"Article 102185"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of foaming and mechanical properties of olefin block copolymer/talc/polypropylene composites in IMD/MIM processes\",\"authors\":\"Tao Feng , Wei Guo , Kui Yan , Feng Zhao , Fankun Zeng , Jialong Zhao\",\"doi\":\"10.1016/j.mtla.2024.102185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In advancing towards carbon neutrality in the automotive industry, polypropylene (PP) plays a crucial role in improving fuel efficiency and reducing carbon emissions as a pivotal lightweight material. However, PP faces challenges in microcellular foaming, including surface quality concerns, intricate molding parameters, and compromised mechanical strength, limiting its broader application. This research introduces an innovative strategy by integrating Olefin Block Copolymer (OBC) into the Talc/PP composite framework using In-mold Decoration/Microcellular Injection Molding (IMD/MIM) techniques to overcome these limitations. Experimental findings reveal that modulating the OBC proportion substantially enhances the PP composites' functionality. Notably, an inclusion of 10 wt% OBC decreases the material's viscosity, and raising the OBC level to 30 wt% markedly improves surface quality with fewer defects. Analyzing cell configuration confirms OBC's beneficial effect on cell size and distribution, particularly in the homogeneity of cells across the material's layers. For mechanical performance, incorporating OBC increased the impact strength from 13.2 kJ/m² to 17.9 kJ/m², highlighting OBC's potential in enhancing PP's toughness. This study enriches our understanding of optimizing PP-based microcellular foamed materials, supporting the development of next-generation lightweight materials. Future efforts will focus on further refinement of the OBC/Talc/PP system for superior performance and practical industrial viability.</p></div>\",\"PeriodicalId\":47623,\"journal\":{\"name\":\"Materialia\",\"volume\":\"36 \",\"pages\":\"Article 102185\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589152924001820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924001820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation of foaming and mechanical properties of olefin block copolymer/talc/polypropylene composites in IMD/MIM processes
In advancing towards carbon neutrality in the automotive industry, polypropylene (PP) plays a crucial role in improving fuel efficiency and reducing carbon emissions as a pivotal lightweight material. However, PP faces challenges in microcellular foaming, including surface quality concerns, intricate molding parameters, and compromised mechanical strength, limiting its broader application. This research introduces an innovative strategy by integrating Olefin Block Copolymer (OBC) into the Talc/PP composite framework using In-mold Decoration/Microcellular Injection Molding (IMD/MIM) techniques to overcome these limitations. Experimental findings reveal that modulating the OBC proportion substantially enhances the PP composites' functionality. Notably, an inclusion of 10 wt% OBC decreases the material's viscosity, and raising the OBC level to 30 wt% markedly improves surface quality with fewer defects. Analyzing cell configuration confirms OBC's beneficial effect on cell size and distribution, particularly in the homogeneity of cells across the material's layers. For mechanical performance, incorporating OBC increased the impact strength from 13.2 kJ/m² to 17.9 kJ/m², highlighting OBC's potential in enhancing PP's toughness. This study enriches our understanding of optimizing PP-based microcellular foamed materials, supporting the development of next-generation lightweight materials. Future efforts will focus on further refinement of the OBC/Talc/PP system for superior performance and practical industrial viability.
期刊介绍:
Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials.
Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).