{"title":"利用离散元素法模拟土壤与被动振动扫地机的相互作用","authors":"Kornél Tamás","doi":"10.1016/j.biosystemseng.2024.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the passive vibration dynamics of a sweep tool in a laboratory soil bin test, employing various spring configurations. A discrete element method (DEM) model of simulating the passively vibrating sweep tool was developed based on the laboratory soil bin tests. Ensuring precision in the DEM model parameters was achieved by applying a genetic algorithm tailored for this purpose. The genetic algorithm revealed that within the particle assemblies of the three geometries used in the DEM, several parameter sets were suitable for accurately describing the modelled soil. The final parameter set was chosen by integrating the DEM model with results from the laboratory direct shear box test. Employing Fast Fourier Transformation, both the laboratory soil bin test and the calibrated DEM model of the soil and the vibrating sweep tool facilitated an examination of frequencies and amplitudes during force and displacement measurements. The results indicated that, compared to a rigid tool, the draught force required by the 16 spring sweep tool was reduced by 6–9%. The absence of DEM would have limited the investigation of kinetic energy in the sweep tool and the dynamics of energy dissipation in the soil, if measurement equipment alone was used. This research successfully demonstrated that the reduced draught force with the 16 spring passively vibrating sweep tool, operating near the system's eigenfrequency, resulted from its ability to generate higher kinetic energy in the sweep tool while minimising energy dissipation in the soil.</p></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"245 ","pages":"Pages 199-222"},"PeriodicalIF":4.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1537511024001405/pdfft?md5=1f883ace78cf98d3a3eba93a1a2e23cc&pid=1-s2.0-S1537511024001405-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Modelling the interaction of soil with a passively-vibrating sweep using the discrete element method\",\"authors\":\"Kornél Tamás\",\"doi\":\"10.1016/j.biosystemseng.2024.06.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the passive vibration dynamics of a sweep tool in a laboratory soil bin test, employing various spring configurations. A discrete element method (DEM) model of simulating the passively vibrating sweep tool was developed based on the laboratory soil bin tests. Ensuring precision in the DEM model parameters was achieved by applying a genetic algorithm tailored for this purpose. The genetic algorithm revealed that within the particle assemblies of the three geometries used in the DEM, several parameter sets were suitable for accurately describing the modelled soil. The final parameter set was chosen by integrating the DEM model with results from the laboratory direct shear box test. Employing Fast Fourier Transformation, both the laboratory soil bin test and the calibrated DEM model of the soil and the vibrating sweep tool facilitated an examination of frequencies and amplitudes during force and displacement measurements. The results indicated that, compared to a rigid tool, the draught force required by the 16 spring sweep tool was reduced by 6–9%. The absence of DEM would have limited the investigation of kinetic energy in the sweep tool and the dynamics of energy dissipation in the soil, if measurement equipment alone was used. This research successfully demonstrated that the reduced draught force with the 16 spring passively vibrating sweep tool, operating near the system's eigenfrequency, resulted from its ability to generate higher kinetic energy in the sweep tool while minimising energy dissipation in the soil.</p></div>\",\"PeriodicalId\":9173,\"journal\":{\"name\":\"Biosystems Engineering\",\"volume\":\"245 \",\"pages\":\"Pages 199-222\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1537511024001405/pdfft?md5=1f883ace78cf98d3a3eba93a1a2e23cc&pid=1-s2.0-S1537511024001405-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosystems Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1537511024001405\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511024001405","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
本研究采用不同的弹簧配置,对实验室土壤仓试验中的扫地工具的被动振动动力学进行了研究。在实验室土壤仓试验的基础上,开发了离散元法(DEM)模型,用于模拟被动振动的扫地工具。通过应用专门定制的遗传算法,确保了 DEM 模型参数的精确性。遗传算法显示,在 DEM 中使用的三种几何形状的颗粒组合中,有几组参数适合精确描述模型土壤。通过将 DEM 模型与实验室直接剪切箱试验结果进行整合,选择了最终的参数集。通过快速傅里叶变换,实验室土壤箱试验和校准后的土壤 DEM 模型以及振动扫描工具都有助于检查力和位移测量过程中的频率和振幅。结果表明,与刚性工具相比,16 个弹簧扫地工具所需的牵引力降低了 6-9%。如果仅使用测量设备,没有 DEM 会限制对清扫工具动能和土壤中能量消耗动态的研究。这项研究成功证明,在系统特征频率附近工作的 16 个弹簧被动振动扫地工具,由于能够在扫地工具中产生更高的动能,同时最大限度地减少土壤中的能量耗散,从而降低了吃水力。
Modelling the interaction of soil with a passively-vibrating sweep using the discrete element method
This study investigates the passive vibration dynamics of a sweep tool in a laboratory soil bin test, employing various spring configurations. A discrete element method (DEM) model of simulating the passively vibrating sweep tool was developed based on the laboratory soil bin tests. Ensuring precision in the DEM model parameters was achieved by applying a genetic algorithm tailored for this purpose. The genetic algorithm revealed that within the particle assemblies of the three geometries used in the DEM, several parameter sets were suitable for accurately describing the modelled soil. The final parameter set was chosen by integrating the DEM model with results from the laboratory direct shear box test. Employing Fast Fourier Transformation, both the laboratory soil bin test and the calibrated DEM model of the soil and the vibrating sweep tool facilitated an examination of frequencies and amplitudes during force and displacement measurements. The results indicated that, compared to a rigid tool, the draught force required by the 16 spring sweep tool was reduced by 6–9%. The absence of DEM would have limited the investigation of kinetic energy in the sweep tool and the dynamics of energy dissipation in the soil, if measurement equipment alone was used. This research successfully demonstrated that the reduced draught force with the 16 spring passively vibrating sweep tool, operating near the system's eigenfrequency, resulted from its ability to generate higher kinetic energy in the sweep tool while minimising energy dissipation in the soil.
期刊介绍:
Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.