{"title":"互补棱柱的自形群","authors":"Marko Orel","doi":"10.1016/j.jctb.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>Given a finite simple graph Γ on <em>n</em> vertices its complementary prism is the graph <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> that is obtained from Γ and its complement <span><math><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> by adding a perfect matching where each its edge connects two copies of the same vertex in Γ and <span><math><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span>. It generalizes the Petersen graph, which is obtained if Γ is the pentagon. The automorphism group of <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> is described for an arbitrary graph Γ. In particular, it is shown that the ratio between the cardinalities of the automorphism groups of <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> and Γ can attain only the values 1, 2, 4, and 12. It is shown that <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> is vertex-transitive if and only if Γ is vertex-transitive and self-complementary. Moreover, the complementary prism is not a Cayley graph whenever <span><math><mi>n</mi><mo>></mo><mn>1</mn></math></span>.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 406-429"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000637/pdfft?md5=a7e845989152de594006704697688b0c&pid=1-s2.0-S0095895624000637-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The automorphism group of a complementary prism\",\"authors\":\"Marko Orel\",\"doi\":\"10.1016/j.jctb.2024.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a finite simple graph Γ on <em>n</em> vertices its complementary prism is the graph <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> that is obtained from Γ and its complement <span><math><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> by adding a perfect matching where each its edge connects two copies of the same vertex in Γ and <span><math><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span>. It generalizes the Petersen graph, which is obtained if Γ is the pentagon. The automorphism group of <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> is described for an arbitrary graph Γ. In particular, it is shown that the ratio between the cardinalities of the automorphism groups of <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> and Γ can attain only the values 1, 2, 4, and 12. It is shown that <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> is vertex-transitive if and only if Γ is vertex-transitive and self-complementary. Moreover, the complementary prism is not a Cayley graph whenever <span><math><mi>n</mi><mo>></mo><mn>1</mn></math></span>.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"169 \",\"pages\":\"Pages 406-429\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000637/pdfft?md5=a7e845989152de594006704697688b0c&pid=1-s2.0-S0095895624000637-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000637\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000637","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Given a finite simple graph Γ on n vertices its complementary prism is the graph that is obtained from Γ and its complement by adding a perfect matching where each its edge connects two copies of the same vertex in Γ and . It generalizes the Petersen graph, which is obtained if Γ is the pentagon. The automorphism group of is described for an arbitrary graph Γ. In particular, it is shown that the ratio between the cardinalities of the automorphism groups of and Γ can attain only the values 1, 2, 4, and 12. It is shown that is vertex-transitive if and only if Γ is vertex-transitive and self-complementary. Moreover, the complementary prism is not a Cayley graph whenever .
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.