互补棱柱的自形群

IF 1.2 1区 数学 Q1 MATHEMATICS
Marko Orel
{"title":"互补棱柱的自形群","authors":"Marko Orel","doi":"10.1016/j.jctb.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>Given a finite simple graph Γ on <em>n</em> vertices its complementary prism is the graph <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> that is obtained from Γ and its complement <span><math><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> by adding a perfect matching where each its edge connects two copies of the same vertex in Γ and <span><math><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span>. It generalizes the Petersen graph, which is obtained if Γ is the pentagon. The automorphism group of <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> is described for an arbitrary graph Γ. In particular, it is shown that the ratio between the cardinalities of the automorphism groups of <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> and Γ can attain only the values 1, 2, 4, and 12. It is shown that <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> is vertex-transitive if and only if Γ is vertex-transitive and self-complementary. Moreover, the complementary prism is not a Cayley graph whenever <span><math><mi>n</mi><mo>&gt;</mo><mn>1</mn></math></span>.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 406-429"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000637/pdfft?md5=a7e845989152de594006704697688b0c&pid=1-s2.0-S0095895624000637-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The automorphism group of a complementary prism\",\"authors\":\"Marko Orel\",\"doi\":\"10.1016/j.jctb.2024.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a finite simple graph Γ on <em>n</em> vertices its complementary prism is the graph <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> that is obtained from Γ and its complement <span><math><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> by adding a perfect matching where each its edge connects two copies of the same vertex in Γ and <span><math><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span>. It generalizes the Petersen graph, which is obtained if Γ is the pentagon. The automorphism group of <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> is described for an arbitrary graph Γ. In particular, it is shown that the ratio between the cardinalities of the automorphism groups of <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> and Γ can attain only the values 1, 2, 4, and 12. It is shown that <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> is vertex-transitive if and only if Γ is vertex-transitive and self-complementary. Moreover, the complementary prism is not a Cayley graph whenever <span><math><mi>n</mi><mo>&gt;</mo><mn>1</mn></math></span>.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"169 \",\"pages\":\"Pages 406-429\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000637/pdfft?md5=a7e845989152de594006704697688b0c&pid=1-s2.0-S0095895624000637-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000637\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000637","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定 n 个顶点上的有限简单图 Γ,其互补棱图是由Γ 及其互补图 Γ¯ 通过添加完美匹配而得到的图ΓΓ¯,其中每条边都连接 Γ 和 Γ¯ 中相同顶点的两个副本。它概括了彼得森图,如果 Γ 是五边形,就会得到彼得森图。对于任意图形 Γ,描述了 ΓΓ¯ 的自变群。特别是,它证明了 ΓΓ¯ 和 Γ 的自变群的心数之比只能达到 1、2、4 和 12 的值。研究表明,当且仅当Γ 是顶点传递的且自互补时,ΓΓ¯ 才是顶点传递的。此外,当 n>1 时,互补棱镜不是一个 Cayley 图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The automorphism group of a complementary prism

Given a finite simple graph Γ on n vertices its complementary prism is the graph ΓΓ¯ that is obtained from Γ and its complement Γ¯ by adding a perfect matching where each its edge connects two copies of the same vertex in Γ and Γ¯. It generalizes the Petersen graph, which is obtained if Γ is the pentagon. The automorphism group of ΓΓ¯ is described for an arbitrary graph Γ. In particular, it is shown that the ratio between the cardinalities of the automorphism groups of ΓΓ¯ and Γ can attain only the values 1, 2, 4, and 12. It is shown that ΓΓ¯ is vertex-transitive if and only if Γ is vertex-transitive and self-complementary. Moreover, the complementary prism is not a Cayley graph whenever n>1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信