{"title":"弱箱完全图定理","authors":"Patrick Chervet , Roland Grappe","doi":"10.1016/j.jctb.2024.07.006","DOIUrl":null,"url":null,"abstract":"<div><p>A graph <em>G</em> is called <em>perfect</em> if <span><math><mi>ω</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><mi>χ</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> for every induced subgraph <em>H</em> of <em>G</em>, where <span><math><mi>ω</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> is the clique number of <em>H</em> and <span><math><mi>χ</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> its chromatic number. The Weak Perfect Graph Theorem of Lovász states that a graph <em>G</em> is perfect if and only if its complement <span><math><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></math></span> is perfect. This does not hold for box-perfect graphs, which are the perfect graphs whose stable set polytope is box-totally dual integral.</p><p>We prove that both <em>G</em> and <span><math><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></math></span> are box-perfect if and only if <span><math><msup><mrow><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></mrow><mrow><mo>+</mo></mrow></msup></math></span> is box-perfect, where <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> is obtained by adding a universal vertex to <em>G</em>. Consequently, <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> is box-perfect if and only if <span><math><msup><mrow><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></mrow><mrow><mo>+</mo></mrow></msup></math></span> is box-perfect. As a corollary, we characterize when the complete join of two graphs is box-perfect.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 367-372"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000650/pdfft?md5=353ef0de641409c4b03042060f5fe02a&pid=1-s2.0-S0095895624000650-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A weak box-perfect graph theorem\",\"authors\":\"Patrick Chervet , Roland Grappe\",\"doi\":\"10.1016/j.jctb.2024.07.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A graph <em>G</em> is called <em>perfect</em> if <span><math><mi>ω</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><mi>χ</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> for every induced subgraph <em>H</em> of <em>G</em>, where <span><math><mi>ω</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> is the clique number of <em>H</em> and <span><math><mi>χ</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> its chromatic number. The Weak Perfect Graph Theorem of Lovász states that a graph <em>G</em> is perfect if and only if its complement <span><math><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></math></span> is perfect. This does not hold for box-perfect graphs, which are the perfect graphs whose stable set polytope is box-totally dual integral.</p><p>We prove that both <em>G</em> and <span><math><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></math></span> are box-perfect if and only if <span><math><msup><mrow><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></mrow><mrow><mo>+</mo></mrow></msup></math></span> is box-perfect, where <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> is obtained by adding a universal vertex to <em>G</em>. Consequently, <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> is box-perfect if and only if <span><math><msup><mrow><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></mrow><mrow><mo>+</mo></mrow></msup></math></span> is box-perfect. As a corollary, we characterize when the complete join of two graphs is box-perfect.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"169 \",\"pages\":\"Pages 367-372\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000650/pdfft?md5=353ef0de641409c4b03042060f5fe02a&pid=1-s2.0-S0095895624000650-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000650\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000650","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
如果对于 G 的每个诱导子图 H,ω(H)=χ(H),其中ω(H) 是 H 的簇数,χ(H) 是色度数,则图 G 称为完美图。洛瓦兹(Lovász)的弱完全图定理指出,当且仅当一个图 G 的补集 G‾ 是完全图时,它才是完全图。我们证明,当且仅当 G‾+ 是盒状完美图时,G 和 G‾ 都是盒状完美图,其中 G+ 是通过在 G 上添加一个通用顶点得到的。作为推论,我们将描述两个图的完全连接是盒状完美的情况。
A graph G is called perfect if for every induced subgraph H of G, where is the clique number of H and its chromatic number. The Weak Perfect Graph Theorem of Lovász states that a graph G is perfect if and only if its complement is perfect. This does not hold for box-perfect graphs, which are the perfect graphs whose stable set polytope is box-totally dual integral.
We prove that both G and are box-perfect if and only if is box-perfect, where is obtained by adding a universal vertex to G. Consequently, is box-perfect if and only if is box-perfect. As a corollary, we characterize when the complete join of two graphs is box-perfect.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.