热电冷冻系统的实验启示:可行性和效率

IF 7.1 Q1 ENERGY & FUELS
{"title":"热电冷冻系统的实验启示:可行性和效率","authors":"","doi":"10.1016/j.ecmx.2024.100676","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents an experimental investigation into the operational performance of a thermoelectric (TE) freezer system. A freezer unit is composed of two-stage thermoelectric modules, an aluminum plate fin heat exchanger sink with fans positioned either on top or directing airflow through the center, and a cooling block incorporating circulating icy water for heat dissipation. Three distinct configurations, featuring varying numbers of freezer units and fan arrangements, underwent testing using a 300-liter freezer prototype under typical room conditions, specifically at 21 °C. The findings illustrate that the minimum temperature inside the freezer cabinet can achieve −16.0 °C across all configurations. Moreover, the cooling capacity can reach up to 74.7 W, with the thermoelectric coefficient of performance (COP) achieving a maximum of 0.45, while the system COP ranges from 0.23 to 0.28. The minimum TE power consumption and TE system power consumption are recorded at 138.8 W and 174.4 W, respectively, suggesting feasibility for practical residential freezer applications. This investigation sets the stage for the development of TE freezers integrated with ice thermal storage applications.</p></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590174524001545/pdfft?md5=9ad7b7a955848ab48ac4a287515cad5d&pid=1-s2.0-S2590174524001545-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Experimental insights into thermoelectric freezer systems: Feasibility and efficiency\",\"authors\":\"\",\"doi\":\"10.1016/j.ecmx.2024.100676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents an experimental investigation into the operational performance of a thermoelectric (TE) freezer system. A freezer unit is composed of two-stage thermoelectric modules, an aluminum plate fin heat exchanger sink with fans positioned either on top or directing airflow through the center, and a cooling block incorporating circulating icy water for heat dissipation. Three distinct configurations, featuring varying numbers of freezer units and fan arrangements, underwent testing using a 300-liter freezer prototype under typical room conditions, specifically at 21 °C. The findings illustrate that the minimum temperature inside the freezer cabinet can achieve −16.0 °C across all configurations. Moreover, the cooling capacity can reach up to 74.7 W, with the thermoelectric coefficient of performance (COP) achieving a maximum of 0.45, while the system COP ranges from 0.23 to 0.28. The minimum TE power consumption and TE system power consumption are recorded at 138.8 W and 174.4 W, respectively, suggesting feasibility for practical residential freezer applications. This investigation sets the stage for the development of TE freezers integrated with ice thermal storage applications.</p></div>\",\"PeriodicalId\":37131,\"journal\":{\"name\":\"Energy Conversion and Management-X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590174524001545/pdfft?md5=9ad7b7a955848ab48ac4a287515cad5d&pid=1-s2.0-S2590174524001545-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management-X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590174524001545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174524001545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究对热电(TE)冷冻系统的运行性能进行了实验研究。冷冻装置由两级热电模块、铝板翅片热交换器水槽(风扇安装在顶部或通过中心引导气流)和冷却块组成,冷却块包含用于散热的循环冰水。在典型的室内条件下,特别是在 21 °C的温度下,使用一个 300 升的冰柜原型进行了三种不同配置的测试,这些配置具有不同数量的冰柜单元和风扇布置。测试结果表明,在所有配置中,冷冻柜内的最低温度都能达到-16.0 °C。此外,制冷量最高可达 74.7 W,热电性能系数(COP)最高可达 0.45,而系统 COP 在 0.23 至 0.28 之间。TE 功率消耗和 TE 系统功率消耗的最小值分别为 138.8 W 和 174.4 W,这表明该技术在实际住宅冰柜应用中是可行的。这项研究为开发集成了冰蓄热应用的 TE 冷冻机奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Experimental insights into thermoelectric freezer systems: Feasibility and efficiency

Experimental insights into thermoelectric freezer systems: Feasibility and efficiency

This study presents an experimental investigation into the operational performance of a thermoelectric (TE) freezer system. A freezer unit is composed of two-stage thermoelectric modules, an aluminum plate fin heat exchanger sink with fans positioned either on top or directing airflow through the center, and a cooling block incorporating circulating icy water for heat dissipation. Three distinct configurations, featuring varying numbers of freezer units and fan arrangements, underwent testing using a 300-liter freezer prototype under typical room conditions, specifically at 21 °C. The findings illustrate that the minimum temperature inside the freezer cabinet can achieve −16.0 °C across all configurations. Moreover, the cooling capacity can reach up to 74.7 W, with the thermoelectric coefficient of performance (COP) achieving a maximum of 0.45, while the system COP ranges from 0.23 to 0.28. The minimum TE power consumption and TE system power consumption are recorded at 138.8 W and 174.4 W, respectively, suggesting feasibility for practical residential freezer applications. This investigation sets the stage for the development of TE freezers integrated with ice thermal storage applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
3.20%
发文量
180
审稿时长
58 days
期刊介绍: Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability. The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信