卡勒多项式

Pub Date : 2024-07-24 DOI:10.1016/j.disc.2024.114177
Giulio Cerbai, Anders Claesson
{"title":"卡勒多项式","authors":"Giulio Cerbai,&nbsp;Anders Claesson","doi":"10.1016/j.disc.2024.114177","DOIUrl":null,"url":null,"abstract":"<div><p>The Eulerian polynomials enumerate permutations according to their number of descents. We initiate the study of descent polynomials over Cayley permutations, which we call Caylerian polynomials. Some classical results are generalized by linking Caylerian polynomials to Burge words and Burge matrices. The <em>γ</em>-nonnegativity of the two-sided Eulerian polynomials is reformulated in terms of Burge structures. Finally, Cayley permutations with a prescribed ascent set are shown to be counted by Burge matrices with fixed row sums.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Caylerian polynomials\",\"authors\":\"Giulio Cerbai,&nbsp;Anders Claesson\",\"doi\":\"10.1016/j.disc.2024.114177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Eulerian polynomials enumerate permutations according to their number of descents. We initiate the study of descent polynomials over Cayley permutations, which we call Caylerian polynomials. Some classical results are generalized by linking Caylerian polynomials to Burge words and Burge matrices. The <em>γ</em>-nonnegativity of the two-sided Eulerian polynomials is reformulated in terms of Burge structures. Finally, Cayley permutations with a prescribed ascent set are shown to be counted by Burge matrices with fixed row sums.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X2400308X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X2400308X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

欧拉多项式根据降序的数量枚举排列。我们开始研究 Cayley 排列的降序多项式,我们称之为 Caylerian 多项式。通过将 Caylerian 多项式与 Burge 词和 Burge 矩阵联系起来,一些经典结果得到了推广。两边欧拉多项式的γ非负性用伯格结构重新表述。最后,证明了具有规定上升集的 Cayley 置换可以用具有固定行和的 Burge 矩阵来计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Caylerian polynomials

The Eulerian polynomials enumerate permutations according to their number of descents. We initiate the study of descent polynomials over Cayley permutations, which we call Caylerian polynomials. Some classical results are generalized by linking Caylerian polynomials to Burge words and Burge matrices. The γ-nonnegativity of the two-sided Eulerian polynomials is reformulated in terms of Burge structures. Finally, Cayley permutations with a prescribed ascent set are shown to be counted by Burge matrices with fixed row sums.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信