{"title":"哈德维格猜想和拓扑边界","authors":"Raphael Steiner","doi":"10.1016/j.ejc.2024.104033","DOIUrl":null,"url":null,"abstract":"<div><p>The Odd Hadwiger’s conjecture, formulated by Gerards and Seymour in 1995, is a substantial strengthening of Hadwiger’s famous coloring conjecture from 1943. We investigate whether the hierarchy of topological lower bounds on the chromatic number, introduced by Matoušek and Ziegler (2003) and refined recently by Daneshpajouh and Meunier (2023), forms a potential avenue to a disproof of Hadwiger’s conjecture or its odd-minor variant. In this direction, we prove that, in a very general sense, every graph <span><math><mi>G</mi></math></span> that admits a topological lower bound of <span><math><mi>t</mi></math></span> on its chromatic number, contains <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌊</mo><mi>t</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow><mo>+</mo><mn>1</mn></mrow></msub></math></span> as an odd-minor. This solves a problem posed by Simonyi and Zsbán (2010).</p><p>We also prove that if for a graph <span><math><mi>G</mi></math></span> the Dol’nikov-Kříž lower bound on the chromatic number (one of the lower bounds in the aforementioned hierarchy) attains a value of at least <span><math><mi>t</mi></math></span>, then <span><math><mi>G</mi></math></span> contains <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> as a minor.</p><p>Finally, extending results by Simonyi and Zsbán, we show that the Odd Hadwiger’s conjecture holds for Schrijver and Kneser graphs for any choice of the parameters. The latter are canonical examples of graphs for which topological lower bounds on the chromatic number are tight.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824001185/pdfft?md5=fa3d2810594b912d86c5d392d33bb225&pid=1-s2.0-S0195669824001185-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hadwiger’s conjecture and topological bounds\",\"authors\":\"Raphael Steiner\",\"doi\":\"10.1016/j.ejc.2024.104033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Odd Hadwiger’s conjecture, formulated by Gerards and Seymour in 1995, is a substantial strengthening of Hadwiger’s famous coloring conjecture from 1943. We investigate whether the hierarchy of topological lower bounds on the chromatic number, introduced by Matoušek and Ziegler (2003) and refined recently by Daneshpajouh and Meunier (2023), forms a potential avenue to a disproof of Hadwiger’s conjecture or its odd-minor variant. In this direction, we prove that, in a very general sense, every graph <span><math><mi>G</mi></math></span> that admits a topological lower bound of <span><math><mi>t</mi></math></span> on its chromatic number, contains <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌊</mo><mi>t</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow><mo>+</mo><mn>1</mn></mrow></msub></math></span> as an odd-minor. This solves a problem posed by Simonyi and Zsbán (2010).</p><p>We also prove that if for a graph <span><math><mi>G</mi></math></span> the Dol’nikov-Kříž lower bound on the chromatic number (one of the lower bounds in the aforementioned hierarchy) attains a value of at least <span><math><mi>t</mi></math></span>, then <span><math><mi>G</mi></math></span> contains <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> as a minor.</p><p>Finally, extending results by Simonyi and Zsbán, we show that the Odd Hadwiger’s conjecture holds for Schrijver and Kneser graphs for any choice of the parameters. The latter are canonical examples of graphs for which topological lower bounds on the chromatic number are tight.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001185/pdfft?md5=fa3d2810594b912d86c5d392d33bb225&pid=1-s2.0-S0195669824001185-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001185\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001185","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
杰勒兹和西摩于 1995 年提出的奇数哈德威格猜想是对哈德威格 1943 年提出的著名着色猜想的实质性加强。我们研究了由 Matoušek 和 Ziegler(2003 年)提出、最近由 Daneshpajouh 和 Meunier(2023 年)完善的色度数拓扑下界的层次结构是否构成了反证哈德维格猜想或其奇小变体的潜在途径。在这个方向上,我们证明了,在非常一般的意义上,每一个在色度数上允许 t 的拓扑下限的图 G,都包含 K⌊t/2⌋+1 作为奇小数。这解决了 Simonyi 和 Zsbán(2010 年)提出的一个问题。我们还证明,如果一个图 G 的色度数的 Dol'nikov-Kříž 下界(上述层次结构中的下界之一)至少达到 t 值,那么 G 就包含 Kt 作为一个次要因子。最后,我们扩展了 Simonyi 和 Zsbán的结果,证明奇数哈德维格猜想在任何参数选择下都适用于 Schrijver 和 Kneser 图。后者是色度数拓扑下限很窄的图的典型例子。
The Odd Hadwiger’s conjecture, formulated by Gerards and Seymour in 1995, is a substantial strengthening of Hadwiger’s famous coloring conjecture from 1943. We investigate whether the hierarchy of topological lower bounds on the chromatic number, introduced by Matoušek and Ziegler (2003) and refined recently by Daneshpajouh and Meunier (2023), forms a potential avenue to a disproof of Hadwiger’s conjecture or its odd-minor variant. In this direction, we prove that, in a very general sense, every graph that admits a topological lower bound of on its chromatic number, contains as an odd-minor. This solves a problem posed by Simonyi and Zsbán (2010).
We also prove that if for a graph the Dol’nikov-Kříž lower bound on the chromatic number (one of the lower bounds in the aforementioned hierarchy) attains a value of at least , then contains as a minor.
Finally, extending results by Simonyi and Zsbán, we show that the Odd Hadwiger’s conjecture holds for Schrijver and Kneser graphs for any choice of the parameters. The latter are canonical examples of graphs for which topological lower bounds on the chromatic number are tight.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.