哈德维格猜想和拓扑边界

IF 1 3区 数学 Q1 MATHEMATICS
Raphael Steiner
{"title":"哈德维格猜想和拓扑边界","authors":"Raphael Steiner","doi":"10.1016/j.ejc.2024.104033","DOIUrl":null,"url":null,"abstract":"<div><p>The Odd Hadwiger’s conjecture, formulated by Gerards and Seymour in 1995, is a substantial strengthening of Hadwiger’s famous coloring conjecture from 1943. We investigate whether the hierarchy of topological lower bounds on the chromatic number, introduced by Matoušek and Ziegler (2003) and refined recently by Daneshpajouh and Meunier (2023), forms a potential avenue to a disproof of Hadwiger’s conjecture or its odd-minor variant. In this direction, we prove that, in a very general sense, every graph <span><math><mi>G</mi></math></span> that admits a topological lower bound of <span><math><mi>t</mi></math></span> on its chromatic number, contains <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌊</mo><mi>t</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow><mo>+</mo><mn>1</mn></mrow></msub></math></span> as an odd-minor. This solves a problem posed by Simonyi and Zsbán (2010).</p><p>We also prove that if for a graph <span><math><mi>G</mi></math></span> the Dol’nikov-Kříž lower bound on the chromatic number (one of the lower bounds in the aforementioned hierarchy) attains a value of at least <span><math><mi>t</mi></math></span>, then <span><math><mi>G</mi></math></span> contains <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> as a minor.</p><p>Finally, extending results by Simonyi and Zsbán, we show that the Odd Hadwiger’s conjecture holds for Schrijver and Kneser graphs for any choice of the parameters. The latter are canonical examples of graphs for which topological lower bounds on the chromatic number are tight.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824001185/pdfft?md5=fa3d2810594b912d86c5d392d33bb225&pid=1-s2.0-S0195669824001185-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hadwiger’s conjecture and topological bounds\",\"authors\":\"Raphael Steiner\",\"doi\":\"10.1016/j.ejc.2024.104033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Odd Hadwiger’s conjecture, formulated by Gerards and Seymour in 1995, is a substantial strengthening of Hadwiger’s famous coloring conjecture from 1943. We investigate whether the hierarchy of topological lower bounds on the chromatic number, introduced by Matoušek and Ziegler (2003) and refined recently by Daneshpajouh and Meunier (2023), forms a potential avenue to a disproof of Hadwiger’s conjecture or its odd-minor variant. In this direction, we prove that, in a very general sense, every graph <span><math><mi>G</mi></math></span> that admits a topological lower bound of <span><math><mi>t</mi></math></span> on its chromatic number, contains <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌊</mo><mi>t</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow><mo>+</mo><mn>1</mn></mrow></msub></math></span> as an odd-minor. This solves a problem posed by Simonyi and Zsbán (2010).</p><p>We also prove that if for a graph <span><math><mi>G</mi></math></span> the Dol’nikov-Kříž lower bound on the chromatic number (one of the lower bounds in the aforementioned hierarchy) attains a value of at least <span><math><mi>t</mi></math></span>, then <span><math><mi>G</mi></math></span> contains <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> as a minor.</p><p>Finally, extending results by Simonyi and Zsbán, we show that the Odd Hadwiger’s conjecture holds for Schrijver and Kneser graphs for any choice of the parameters. The latter are canonical examples of graphs for which topological lower bounds on the chromatic number are tight.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001185/pdfft?md5=fa3d2810594b912d86c5d392d33bb225&pid=1-s2.0-S0195669824001185-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001185\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001185","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

杰勒兹和西摩于 1995 年提出的奇数哈德威格猜想是对哈德威格 1943 年提出的著名着色猜想的实质性加强。我们研究了由 Matoušek 和 Ziegler(2003 年)提出、最近由 Daneshpajouh 和 Meunier(2023 年)完善的色度数拓扑下界的层次结构是否构成了反证哈德维格猜想或其奇小变体的潜在途径。在这个方向上,我们证明了,在非常一般的意义上,每一个在色度数上允许 t 的拓扑下限的图 G,都包含 K⌊t/2⌋+1 作为奇小数。这解决了 Simonyi 和 Zsbán(2010 年)提出的一个问题。我们还证明,如果一个图 G 的色度数的 Dol'nikov-Kříž 下界(上述层次结构中的下界之一)至少达到 t 值,那么 G 就包含 Kt 作为一个次要因子。最后,我们扩展了 Simonyi 和 Zsbán的结果,证明奇数哈德维格猜想在任何参数选择下都适用于 Schrijver 和 Kneser 图。后者是色度数拓扑下限很窄的图的典型例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hadwiger’s conjecture and topological bounds

The Odd Hadwiger’s conjecture, formulated by Gerards and Seymour in 1995, is a substantial strengthening of Hadwiger’s famous coloring conjecture from 1943. We investigate whether the hierarchy of topological lower bounds on the chromatic number, introduced by Matoušek and Ziegler (2003) and refined recently by Daneshpajouh and Meunier (2023), forms a potential avenue to a disproof of Hadwiger’s conjecture or its odd-minor variant. In this direction, we prove that, in a very general sense, every graph G that admits a topological lower bound of t on its chromatic number, contains Kt/2+1 as an odd-minor. This solves a problem posed by Simonyi and Zsbán (2010).

We also prove that if for a graph G the Dol’nikov-Kříž lower bound on the chromatic number (one of the lower bounds in the aforementioned hierarchy) attains a value of at least t, then G contains Kt as a minor.

Finally, extending results by Simonyi and Zsbán, we show that the Odd Hadwiger’s conjecture holds for Schrijver and Kneser graphs for any choice of the parameters. The latter are canonical examples of graphs for which topological lower bounds on the chromatic number are tight.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信