关于无三角形图形的循环隔离数

IF 0.7 3区 数学 Q2 MATHEMATICS
{"title":"关于无三角形图形的循环隔离数","authors":"","doi":"10.1016/j.disc.2024.114190","DOIUrl":null,"url":null,"abstract":"<div><p>For a graph <em>G</em>, a subset <span><math><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is called a cycle isolating set of <em>G</em> if <span><math><mi>G</mi><mo>−</mo><mi>N</mi><mo>[</mo><mi>D</mi><mo>]</mo></math></span> contains no cycle. The cycle isolation number of <em>G</em>, denoted by <span><math><msub><mrow><mi>ι</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the minimum cardinality of a cycle isolating set of <em>G</em>. Recently, Borg proved that if <em>G</em> is a connected <em>n</em>-vertex graph that is not a triangle, then <span><math><msub><mrow><mi>ι</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></mfrac></math></span>. In this paper, we prove that if <em>G</em> is a connected triangle-free <em>n</em>-vertex graph that is not a 4-cycle, then <span><math><msub><mrow><mi>ι</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>5</mn></mrow></mfrac></math></span>. In particular, we characterize the subcubic graphs that attain the bound. For graphs with larger girth, several conjectures are proposed.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the cycle isolation number of triangle-free graphs\",\"authors\":\"\",\"doi\":\"10.1016/j.disc.2024.114190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a graph <em>G</em>, a subset <span><math><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is called a cycle isolating set of <em>G</em> if <span><math><mi>G</mi><mo>−</mo><mi>N</mi><mo>[</mo><mi>D</mi><mo>]</mo></math></span> contains no cycle. The cycle isolation number of <em>G</em>, denoted by <span><math><msub><mrow><mi>ι</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the minimum cardinality of a cycle isolating set of <em>G</em>. Recently, Borg proved that if <em>G</em> is a connected <em>n</em>-vertex graph that is not a triangle, then <span><math><msub><mrow><mi>ι</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></mfrac></math></span>. In this paper, we prove that if <em>G</em> is a connected triangle-free <em>n</em>-vertex graph that is not a 4-cycle, then <span><math><msub><mrow><mi>ι</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>5</mn></mrow></mfrac></math></span>. In particular, we characterize the subcubic graphs that attain the bound. For graphs with larger girth, several conjectures are proposed.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003212\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003212","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于图 G,如果 G-N[D] 不包含循环,则子集 S⊆V(G)称为 G 的循环隔离集。最近,博格(Borg)证明了如果 G 是一个非三角形的 n 顶点连通图,则 ιc(G)≤n4。在本文中,我们证明了如果 G 是一个非 4 循环的无三角形 n 顶点连通图,则 ιc(G)≤n5。我们特别描述了达到该界限的亚立方图的特征。对于周长较大的图,我们提出了几个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the cycle isolation number of triangle-free graphs

For a graph G, a subset SV(G) is called a cycle isolating set of G if GN[D] contains no cycle. The cycle isolation number of G, denoted by ιc(G), is the minimum cardinality of a cycle isolating set of G. Recently, Borg proved that if G is a connected n-vertex graph that is not a triangle, then ιc(G)n4. In this paper, we prove that if G is a connected triangle-free n-vertex graph that is not a 4-cycle, then ιc(G)n5. In particular, we characterize the subcubic graphs that attain the bound. For graphs with larger girth, several conjectures are proposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信