{"title":"某些微分系统中极限循环的零-霍普夫分岔","authors":"Bo Huang , Dongming Wang","doi":"10.1016/j.bulsci.2024.103472","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies the number of limit cycles that may bifurcate from an equilibrium of an autonomous system of differential equations. The system in question is assumed to be of dimension <em>n</em>, have a zero-Hopf equilibrium at the origin, and consist only of homogeneous terms of order <em>m</em>. Denote by <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> the maximum number of limit cycles of the system that can be detected by using the averaging method of order <em>k</em>. We prove that <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo><mo>≤</mo><mo>(</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>⋅</mo><msup><mrow><mi>m</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo><mo>≤</mo><msup><mrow><mo>(</mo><mi>k</mi><mi>m</mi><mo>)</mo></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> for generic <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>k</mi><mo>></mo><mn>1</mn></math></span>. The exact numbers of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> or tight bounds on the numbers are determined by computing the mixed volumes of some polynomial systems obtained from the averaged functions. Based on symbolic and algebraic computation, a general and algorithmic approach is proposed to derive sufficient conditions for a given differential system to have a prescribed number of limit cycles. The effectiveness of the proposed approach is illustrated by a family of third-order differential equations, a four-dimensional hyperchaotic differential system and a model of nuclear spin generator.</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"195 ","pages":"Article 103472"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero-Hopf bifurcation of limit cycles in certain differential systems\",\"authors\":\"Bo Huang , Dongming Wang\",\"doi\":\"10.1016/j.bulsci.2024.103472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper studies the number of limit cycles that may bifurcate from an equilibrium of an autonomous system of differential equations. The system in question is assumed to be of dimension <em>n</em>, have a zero-Hopf equilibrium at the origin, and consist only of homogeneous terms of order <em>m</em>. Denote by <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> the maximum number of limit cycles of the system that can be detected by using the averaging method of order <em>k</em>. We prove that <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo><mo>≤</mo><mo>(</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>⋅</mo><msup><mrow><mi>m</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo><mo>≤</mo><msup><mrow><mo>(</mo><mi>k</mi><mi>m</mi><mo>)</mo></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> for generic <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>k</mi><mo>></mo><mn>1</mn></math></span>. The exact numbers of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> or tight bounds on the numbers are determined by computing the mixed volumes of some polynomial systems obtained from the averaged functions. Based on symbolic and algebraic computation, a general and algorithmic approach is proposed to derive sufficient conditions for a given differential system to have a prescribed number of limit cycles. The effectiveness of the proposed approach is illustrated by a family of third-order differential equations, a four-dimensional hyperchaotic differential system and a model of nuclear spin generator.</p></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"195 \",\"pages\":\"Article 103472\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449724000903\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724000903","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本文研究一个自发微分方程系统的平衡点可能分岔出的极限循环次数。假设该系统的维数为 n,在原点处有零霍普夫均衡,且仅由阶数为 m 的同质项组成。用 Hk(n,m) 表示使用阶数为 k 的平均法可以检测到的系统极限循环的最大次数。我们证明,对于一般的 n≥3,m≥2 和 k>1,H1(n,m)≤(m-1)⋅mn-2 和 Hk(n,m)≤(km)n-1。 Hk(n,m)的精确数字或数字的紧约束是通过计算由平均函数得到的一些多项式系统的混合体积确定的。在符号和代数计算的基础上,提出了一种通用的算法方法,以推导给定微分系统具有规定极限循环数的充分条件。一个三阶微分方程族、一个四维超混沌微分系统和一个核自旋发生器模型说明了所提方法的有效性。
Zero-Hopf bifurcation of limit cycles in certain differential systems
This paper studies the number of limit cycles that may bifurcate from an equilibrium of an autonomous system of differential equations. The system in question is assumed to be of dimension n, have a zero-Hopf equilibrium at the origin, and consist only of homogeneous terms of order m. Denote by the maximum number of limit cycles of the system that can be detected by using the averaging method of order k. We prove that and for generic , and . The exact numbers of or tight bounds on the numbers are determined by computing the mixed volumes of some polynomial systems obtained from the averaged functions. Based on symbolic and algebraic computation, a general and algorithmic approach is proposed to derive sufficient conditions for a given differential system to have a prescribed number of limit cycles. The effectiveness of the proposed approach is illustrated by a family of third-order differential equations, a four-dimensional hyperchaotic differential system and a model of nuclear spin generator.