某些微分系统中极限循环的零-霍普夫分岔

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Bo Huang , Dongming Wang
{"title":"某些微分系统中极限循环的零-霍普夫分岔","authors":"Bo Huang ,&nbsp;Dongming Wang","doi":"10.1016/j.bulsci.2024.103472","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies the number of limit cycles that may bifurcate from an equilibrium of an autonomous system of differential equations. The system in question is assumed to be of dimension <em>n</em>, have a zero-Hopf equilibrium at the origin, and consist only of homogeneous terms of order <em>m</em>. Denote by <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> the maximum number of limit cycles of the system that can be detected by using the averaging method of order <em>k</em>. We prove that <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo><mo>≤</mo><mo>(</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>⋅</mo><msup><mrow><mi>m</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo><mo>≤</mo><msup><mrow><mo>(</mo><mi>k</mi><mi>m</mi><mo>)</mo></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> for generic <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>k</mi><mo>&gt;</mo><mn>1</mn></math></span>. The exact numbers of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> or tight bounds on the numbers are determined by computing the mixed volumes of some polynomial systems obtained from the averaged functions. Based on symbolic and algebraic computation, a general and algorithmic approach is proposed to derive sufficient conditions for a given differential system to have a prescribed number of limit cycles. The effectiveness of the proposed approach is illustrated by a family of third-order differential equations, a four-dimensional hyperchaotic differential system and a model of nuclear spin generator.</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"195 ","pages":"Article 103472"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero-Hopf bifurcation of limit cycles in certain differential systems\",\"authors\":\"Bo Huang ,&nbsp;Dongming Wang\",\"doi\":\"10.1016/j.bulsci.2024.103472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper studies the number of limit cycles that may bifurcate from an equilibrium of an autonomous system of differential equations. The system in question is assumed to be of dimension <em>n</em>, have a zero-Hopf equilibrium at the origin, and consist only of homogeneous terms of order <em>m</em>. Denote by <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> the maximum number of limit cycles of the system that can be detected by using the averaging method of order <em>k</em>. We prove that <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo><mo>≤</mo><mo>(</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>⋅</mo><msup><mrow><mi>m</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo><mo>≤</mo><msup><mrow><mo>(</mo><mi>k</mi><mi>m</mi><mo>)</mo></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> for generic <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>k</mi><mo>&gt;</mo><mn>1</mn></math></span>. The exact numbers of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> or tight bounds on the numbers are determined by computing the mixed volumes of some polynomial systems obtained from the averaged functions. Based on symbolic and algebraic computation, a general and algorithmic approach is proposed to derive sufficient conditions for a given differential system to have a prescribed number of limit cycles. The effectiveness of the proposed approach is illustrated by a family of third-order differential equations, a four-dimensional hyperchaotic differential system and a model of nuclear spin generator.</p></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"195 \",\"pages\":\"Article 103472\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449724000903\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724000903","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究一个自发微分方程系统的平衡点可能分岔出的极限循环次数。假设该系统的维数为 n,在原点处有零霍普夫均衡,且仅由阶数为 m 的同质项组成。用 Hk(n,m) 表示使用阶数为 k 的平均法可以检测到的系统极限循环的最大次数。我们证明,对于一般的 n≥3,m≥2 和 k>1,H1(n,m)≤(m-1)⋅mn-2 和 Hk(n,m)≤(km)n-1。 Hk(n,m)的精确数字或数字的紧约束是通过计算由平均函数得到的一些多项式系统的混合体积确定的。在符号和代数计算的基础上,提出了一种通用的算法方法,以推导给定微分系统具有规定极限循环数的充分条件。一个三阶微分方程族、一个四维超混沌微分系统和一个核自旋发生器模型说明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero-Hopf bifurcation of limit cycles in certain differential systems

This paper studies the number of limit cycles that may bifurcate from an equilibrium of an autonomous system of differential equations. The system in question is assumed to be of dimension n, have a zero-Hopf equilibrium at the origin, and consist only of homogeneous terms of order m. Denote by Hk(n,m) the maximum number of limit cycles of the system that can be detected by using the averaging method of order k. We prove that H1(n,m)(m1)mn2 and Hk(n,m)(km)n1 for generic n3, m2 and k>1. The exact numbers of Hk(n,m) or tight bounds on the numbers are determined by computing the mixed volumes of some polynomial systems obtained from the averaged functions. Based on symbolic and algebraic computation, a general and algorithmic approach is proposed to derive sufficient conditions for a given differential system to have a prescribed number of limit cycles. The effectiveness of the proposed approach is illustrated by a family of third-order differential equations, a four-dimensional hyperchaotic differential system and a model of nuclear spin generator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信