一类片断平稳近哈密尔顿系统中的霍普夫分岔

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Maoan Han, Shanshan Liu
{"title":"一类片断平稳近哈密尔顿系统中的霍普夫分岔","authors":"Maoan Han,&nbsp;Shanshan Liu","doi":"10.1016/j.bulsci.2024.103471","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we discuss Hopf bifurcation for planar piecewise smooth near-Hamiltonian systems with a center of parabolic-parabolic (PP) or focus-parabolic (FP) type. By studying asymptotic expansion of the first order Melnikov function, we obtain theorems to find an upper bound and a lower bound of the number of limit cycles near the center of these two types, respectively. Finally we provide two applications.</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"195 ","pages":"Article 103471"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hopf bifurcation in a class of piecewise smooth near-Hamiltonian systems\",\"authors\":\"Maoan Han,&nbsp;Shanshan Liu\",\"doi\":\"10.1016/j.bulsci.2024.103471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we discuss Hopf bifurcation for planar piecewise smooth near-Hamiltonian systems with a center of parabolic-parabolic (PP) or focus-parabolic (FP) type. By studying asymptotic expansion of the first order Melnikov function, we obtain theorems to find an upper bound and a lower bound of the number of limit cycles near the center of these two types, respectively. Finally we provide two applications.</p></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"195 \",\"pages\":\"Article 103471\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449724000897\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724000897","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了以抛物线-抛物线(PP)或焦点-抛物线(FP)类型为中心的平面片断平滑近哈密尔顿系统的霍普夫分岔。通过研究一阶梅利尼科夫函数的渐近展开,我们分别得到了这两种类型中心附近极限循环次数的上限和下限定理。最后,我们提供了两个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hopf bifurcation in a class of piecewise smooth near-Hamiltonian systems

In this paper, we discuss Hopf bifurcation for planar piecewise smooth near-Hamiltonian systems with a center of parabolic-parabolic (PP) or focus-parabolic (FP) type. By studying asymptotic expansion of the first order Melnikov function, we obtain theorems to find an upper bound and a lower bound of the number of limit cycles near the center of these two types, respectively. Finally we provide two applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信