具有反平方无限势阱的抛物方程的近似边界可控性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Arick Shao , Bruno Vergara
{"title":"具有反平方无限势阱的抛物方程的近似边界可控性","authors":"Arick Shao ,&nbsp;Bruno Vergara","doi":"10.1016/j.na.2024.113624","DOIUrl":null,"url":null,"abstract":"<div><p>We consider heat operators on a bounded domain <span><math><mrow><mi>Ω</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span>, with a critically singular potential diverging as the inverse square of the distance to <span><math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math></span>. Although null boundary controllability for such operators was recently proved in all dimensions in Enciso et al. (2023) , it crucially assumed (i) <span><math><mi>Ω</mi></math></span> was convex, (ii) the control must be prescribed along all of <span><math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math></span>, and (iii) the strength of the singular potential must be restricted to a particular subrange. In this article, we prove instead a definitive approximate boundary control result for these operators, in that we (i) do not assume convexity of <span><math><mi>Ω</mi></math></span>, (ii) allow for the control to be localized near any <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>∂</mi><mi>Ω</mi></mrow></math></span>, and (iii) treat the full range of strength parameters for the singular potential. Moreover, we lower the regularity required for <span><math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math></span> and the lower-order coefficients. The key novelty is a local Carleman estimate near <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, with a carefully chosen weight that takes into account both the appropriate boundary conditions and the local geometry of <span><math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math></span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate boundary controllability for parabolic equations with inverse square infinite potential wells\",\"authors\":\"Arick Shao ,&nbsp;Bruno Vergara\",\"doi\":\"10.1016/j.na.2024.113624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider heat operators on a bounded domain <span><math><mrow><mi>Ω</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span>, with a critically singular potential diverging as the inverse square of the distance to <span><math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math></span>. Although null boundary controllability for such operators was recently proved in all dimensions in Enciso et al. (2023) , it crucially assumed (i) <span><math><mi>Ω</mi></math></span> was convex, (ii) the control must be prescribed along all of <span><math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math></span>, and (iii) the strength of the singular potential must be restricted to a particular subrange. In this article, we prove instead a definitive approximate boundary control result for these operators, in that we (i) do not assume convexity of <span><math><mi>Ω</mi></math></span>, (ii) allow for the control to be localized near any <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>∂</mi><mi>Ω</mi></mrow></math></span>, and (iii) treat the full range of strength parameters for the singular potential. Moreover, we lower the regularity required for <span><math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math></span> and the lower-order coefficients. The key novelty is a local Carleman estimate near <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, with a carefully chosen weight that takes into account both the appropriate boundary conditions and the local geometry of <span><math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math></span>.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001433\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001433","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑有界域 Ω⊆Rn 上的热算子,其临界奇异势发散为到 ∂Ω 的距离的反平方。尽管最近 Enciso 等人 (2023) 在所有维度上证明了此类算子的空边界可控性,但其关键假设是:(i) Ω 是凸的;(ii) 控制必须沿∂Ω 的所有方向规定;(iii) 奇异势的强度必须限制在特定子范围内。在本文中,我们证明了这些算子的近似边界控制结果,我们(i) 不假设 Ω 的凸性,(ii) 允许控制在任意 x0∈∂Ω 附近局部化,(iii) 处理奇异势的全部强度参数。此外,我们降低了对∂Ω 和低阶系数的正则性要求。关键的新颖之处在于 x0 附近的局部卡勒曼估计,其权重经过精心选择,既考虑到了适当的边界条件,又考虑到了∂Ω 的局部几何形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate boundary controllability for parabolic equations with inverse square infinite potential wells

We consider heat operators on a bounded domain ΩRn, with a critically singular potential diverging as the inverse square of the distance to Ω. Although null boundary controllability for such operators was recently proved in all dimensions in Enciso et al. (2023) , it crucially assumed (i) Ω was convex, (ii) the control must be prescribed along all of Ω, and (iii) the strength of the singular potential must be restricted to a particular subrange. In this article, we prove instead a definitive approximate boundary control result for these operators, in that we (i) do not assume convexity of Ω, (ii) allow for the control to be localized near any x0Ω, and (iii) treat the full range of strength parameters for the singular potential. Moreover, we lower the regularity required for Ω and the lower-order coefficients. The key novelty is a local Carleman estimate near x0, with a carefully chosen weight that takes into account both the appropriate boundary conditions and the local geometry of Ω.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信