{"title":"混交林对欧洲树皮甲虫 Ips typographus 侵害挪威云杉的直接和中介影响","authors":"","doi":"10.1016/j.foreco.2024.122184","DOIUrl":null,"url":null,"abstract":"<div><p>Climate change-induced windfalls and droughts exacerbate bark beetle outbreaks, severely impacting forest ecosystems. Despite extensive research on bark beetle infestation patterns, the question regarding the optimal spatial grid (SG) size for analyzing this phenomenon remains unresolved. The protective potential of natural forest complexity against bark beetles has been underestimated. We used remotely sensed data to fit Generalized Linear Models and structural equation models to explore the direct and environment-mediated effects of mixed forest cover (MFC) on Norway spruce forest infestation in central Europe. We assessed the effectiveness of various spatial grids (from 100 m to 1 km) for studying infestation by <em>Ips typographus</em>. We found a strong non-linear decline in infestation with increasing MFC across different spatial scales. The relationship between infestation and temperature was positive, while elevation had a negative effect on infestation, with higher infestation rates observed below 900 m. Direct effects of environmental predictors on infestation were significant at SGs of 100 m, 300 m, 400 m, and 500 m, but insignificant at 200 m and 1000 m SGs. Slope positively influenced infestation at 300 m and 400 m SGs. MFC exhibited significant indirect effects on infestation mediated by elevation, temperature, potential evapotranspiration, slope, and heat load index. Landscape variables played a significant role in the models at high-resolution spatial grids, whereas climate variables were influential in models at lower spatial grids of infestation data. We argue that mixed forest facilitates cooling, preserves water, enriches symbiotic fungal community, alleviating tree drought stress and mitigating infestation risk. Broad-leave trees’ non-host volatiles presumably disrupt olfactory signals, impeding beetles’ ability to locate host trees effectively. Our results underscore the potential of increasing mixed forest cover as a self-sustainable silvicultural measure for forest protection against <em>I. typographus</em> and for mitigating the effects of climate change.</p></div>","PeriodicalId":12350,"journal":{"name":"Forest Ecology and Management","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct and mediated impacts of mixed forests on Norway spruce infestation by European bark beetle Ips typographus\",\"authors\":\"\",\"doi\":\"10.1016/j.foreco.2024.122184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Climate change-induced windfalls and droughts exacerbate bark beetle outbreaks, severely impacting forest ecosystems. Despite extensive research on bark beetle infestation patterns, the question regarding the optimal spatial grid (SG) size for analyzing this phenomenon remains unresolved. The protective potential of natural forest complexity against bark beetles has been underestimated. We used remotely sensed data to fit Generalized Linear Models and structural equation models to explore the direct and environment-mediated effects of mixed forest cover (MFC) on Norway spruce forest infestation in central Europe. We assessed the effectiveness of various spatial grids (from 100 m to 1 km) for studying infestation by <em>Ips typographus</em>. We found a strong non-linear decline in infestation with increasing MFC across different spatial scales. The relationship between infestation and temperature was positive, while elevation had a negative effect on infestation, with higher infestation rates observed below 900 m. Direct effects of environmental predictors on infestation were significant at SGs of 100 m, 300 m, 400 m, and 500 m, but insignificant at 200 m and 1000 m SGs. Slope positively influenced infestation at 300 m and 400 m SGs. MFC exhibited significant indirect effects on infestation mediated by elevation, temperature, potential evapotranspiration, slope, and heat load index. Landscape variables played a significant role in the models at high-resolution spatial grids, whereas climate variables were influential in models at lower spatial grids of infestation data. We argue that mixed forest facilitates cooling, preserves water, enriches symbiotic fungal community, alleviating tree drought stress and mitigating infestation risk. Broad-leave trees’ non-host volatiles presumably disrupt olfactory signals, impeding beetles’ ability to locate host trees effectively. Our results underscore the potential of increasing mixed forest cover as a self-sustainable silvicultural measure for forest protection against <em>I. typographus</em> and for mitigating the effects of climate change.</p></div>\",\"PeriodicalId\":12350,\"journal\":{\"name\":\"Forest Ecology and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forest Ecology and Management\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378112724004961\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecology and Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378112724004961","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Direct and mediated impacts of mixed forests on Norway spruce infestation by European bark beetle Ips typographus
Climate change-induced windfalls and droughts exacerbate bark beetle outbreaks, severely impacting forest ecosystems. Despite extensive research on bark beetle infestation patterns, the question regarding the optimal spatial grid (SG) size for analyzing this phenomenon remains unresolved. The protective potential of natural forest complexity against bark beetles has been underestimated. We used remotely sensed data to fit Generalized Linear Models and structural equation models to explore the direct and environment-mediated effects of mixed forest cover (MFC) on Norway spruce forest infestation in central Europe. We assessed the effectiveness of various spatial grids (from 100 m to 1 km) for studying infestation by Ips typographus. We found a strong non-linear decline in infestation with increasing MFC across different spatial scales. The relationship between infestation and temperature was positive, while elevation had a negative effect on infestation, with higher infestation rates observed below 900 m. Direct effects of environmental predictors on infestation were significant at SGs of 100 m, 300 m, 400 m, and 500 m, but insignificant at 200 m and 1000 m SGs. Slope positively influenced infestation at 300 m and 400 m SGs. MFC exhibited significant indirect effects on infestation mediated by elevation, temperature, potential evapotranspiration, slope, and heat load index. Landscape variables played a significant role in the models at high-resolution spatial grids, whereas climate variables were influential in models at lower spatial grids of infestation data. We argue that mixed forest facilitates cooling, preserves water, enriches symbiotic fungal community, alleviating tree drought stress and mitigating infestation risk. Broad-leave trees’ non-host volatiles presumably disrupt olfactory signals, impeding beetles’ ability to locate host trees effectively. Our results underscore the potential of increasing mixed forest cover as a self-sustainable silvicultural measure for forest protection against I. typographus and for mitigating the effects of climate change.
期刊介绍:
Forest Ecology and Management publishes scientific articles linking forest ecology with forest management, focusing on the application of biological, ecological and social knowledge to the management and conservation of plantations and natural forests. The scope of the journal includes all forest ecosystems of the world.
A peer-review process ensures the quality and international interest of the manuscripts accepted for publication. The journal encourages communication between scientists in disparate fields who share a common interest in ecology and forest management, bridging the gap between research workers and forest managers.
We encourage submission of papers that will have the strongest interest and value to the Journal''s international readership. Some key features of papers with strong interest include:
1. Clear connections between the ecology and management of forests;
2. Novel ideas or approaches to important challenges in forest ecology and management;
3. Studies that address a population of interest beyond the scale of single research sites, Three key points in the design of forest experiments, Forest Ecology and Management 255 (2008) 2022-2023);
4. Review Articles on timely, important topics. Authors are welcome to contact one of the editors to discuss the suitability of a potential review manuscript.
The Journal encourages proposals for special issues examining important areas of forest ecology and management. Potential guest editors should contact any of the Editors to begin discussions about topics, potential papers, and other details.