生物黏附性纳米颗粒的肺部给药,单剂量给药改善 ALI 和预防 ARDS

Q1 Engineering
{"title":"生物黏附性纳米颗粒的肺部给药,单剂量给药改善 ALI 和预防 ARDS","authors":"","doi":"10.1016/j.smaim.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI), is the major cause of intensive care unit death worldwide. ALI/ARDS is a common condition characterized by a storm of potent inflammatory cytokines. Lung delivery of glucocorticoids (GCs) by inhalation is a potential approach for ALI treatment and ARDS prevention; however, its efficacy is limited by the rapid clearance of GCs in lungs. In this study, we developed surface-modified poly(lactic acid)-hyperbranched polyglycerol nanoparticles (BNPs) with bioadhesive properties for local delivery to the epidermis of lung tissues, which exhibited prolonged release profile of payloads following intratracheal spraying administration. Compared with that of non-adhesive nanoparticles (NNPs), BNPs showed significantly enhanced adhesion and prolonged retention within lung tissues <em>in vivo</em>. Lipopolysaccharide (LPS)-induced ALI mice treated with betamethasone dipropionate (BD)-loaded BNPs showed significantly fewer lung histological alterations and less lung inflammation than those administered free BD or BD-loaded NNPs, indicating the enhanced therapeutic efficacy of BD/BNPs in ALI. In contrast, the features of ARDS were observed in the animal models without any treatments. Our findings demonstrated that pulmonary delivery of BNPs can maintain their same surface structures and continuously form covalent connections with the contacted tissues, emphasizing their potential to improve the therapeutic efficacy in ALI and prevent from ARDS.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000334/pdfft?md5=1acb277ba6a445c71eb2a6dca0ba19a4&pid=1-s2.0-S2590183424000334-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Pulmonary delivery of bioadhesive nanoparticles for ALI improvement and ARDS prevention with a single-dose administration\",\"authors\":\"\",\"doi\":\"10.1016/j.smaim.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI), is the major cause of intensive care unit death worldwide. ALI/ARDS is a common condition characterized by a storm of potent inflammatory cytokines. Lung delivery of glucocorticoids (GCs) by inhalation is a potential approach for ALI treatment and ARDS prevention; however, its efficacy is limited by the rapid clearance of GCs in lungs. In this study, we developed surface-modified poly(lactic acid)-hyperbranched polyglycerol nanoparticles (BNPs) with bioadhesive properties for local delivery to the epidermis of lung tissues, which exhibited prolonged release profile of payloads following intratracheal spraying administration. Compared with that of non-adhesive nanoparticles (NNPs), BNPs showed significantly enhanced adhesion and prolonged retention within lung tissues <em>in vivo</em>. Lipopolysaccharide (LPS)-induced ALI mice treated with betamethasone dipropionate (BD)-loaded BNPs showed significantly fewer lung histological alterations and less lung inflammation than those administered free BD or BD-loaded NNPs, indicating the enhanced therapeutic efficacy of BD/BNPs in ALI. In contrast, the features of ARDS were observed in the animal models without any treatments. Our findings demonstrated that pulmonary delivery of BNPs can maintain their same surface structures and continuously form covalent connections with the contacted tissues, emphasizing their potential to improve the therapeutic efficacy in ALI and prevent from ARDS.</p></div>\",\"PeriodicalId\":22019,\"journal\":{\"name\":\"Smart Materials in Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590183424000334/pdfft?md5=1acb277ba6a445c71eb2a6dca0ba19a4&pid=1-s2.0-S2590183424000334-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590183424000334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590183424000334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

急性呼吸窘迫综合征(ARDS)是急性肺损伤(ALI)的一种严重形式,是全球重症监护病房死亡的主要原因。ALI/ARDS是一种常见病,其特征是强效炎症细胞因子风暴。通过吸入肺部输送糖皮质激素(GCs)是治疗 ALI 和预防 ARDS 的一种潜在方法;然而,GCs 在肺部的快速清除限制了其疗效。在这项研究中,我们开发了具有生物粘附性的表面修饰聚(乳酸)-超支化聚甘油纳米颗粒(BNPs),用于局部输送到肺组织的表皮层。与非粘附性纳米颗粒(NNPs)相比,BNPs 在体内肺组织内的粘附性明显增强,保留时间更长。用二丙酸倍他米松(BD)负载的 BNPs 治疗脂多糖(LPS)诱导的 ALI 小鼠,其肺部组织学改变和肺部炎症明显少于用游离 BD 或 BD 负载的 NNPs 治疗的小鼠,这表明 BD/BNPs 对 ALI 的疗效更佳。相比之下,在未接受任何治疗的动物模型中观察到了 ARDS 的特征。我们的研究结果表明,肺输送 BNPs 可保持其相同的表面结构,并持续与接触的组织形成共价连接,这凸显了 BNPs 改善 ALI 疗效和预防 ARDS 的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pulmonary delivery of bioadhesive nanoparticles for ALI improvement and ARDS prevention with a single-dose administration

Pulmonary delivery of bioadhesive nanoparticles for ALI improvement and ARDS prevention with a single-dose administration

Acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI), is the major cause of intensive care unit death worldwide. ALI/ARDS is a common condition characterized by a storm of potent inflammatory cytokines. Lung delivery of glucocorticoids (GCs) by inhalation is a potential approach for ALI treatment and ARDS prevention; however, its efficacy is limited by the rapid clearance of GCs in lungs. In this study, we developed surface-modified poly(lactic acid)-hyperbranched polyglycerol nanoparticles (BNPs) with bioadhesive properties for local delivery to the epidermis of lung tissues, which exhibited prolonged release profile of payloads following intratracheal spraying administration. Compared with that of non-adhesive nanoparticles (NNPs), BNPs showed significantly enhanced adhesion and prolonged retention within lung tissues in vivo. Lipopolysaccharide (LPS)-induced ALI mice treated with betamethasone dipropionate (BD)-loaded BNPs showed significantly fewer lung histological alterations and less lung inflammation than those administered free BD or BD-loaded NNPs, indicating the enhanced therapeutic efficacy of BD/BNPs in ALI. In contrast, the features of ARDS were observed in the animal models without any treatments. Our findings demonstrated that pulmonary delivery of BNPs can maintain their same surface structures and continuously form covalent connections with the contacted tissues, emphasizing their potential to improve the therapeutic efficacy in ALI and prevent from ARDS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Materials in Medicine
Smart Materials in Medicine Engineering-Biomedical Engineering
CiteScore
14.00
自引率
0.00%
发文量
41
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信